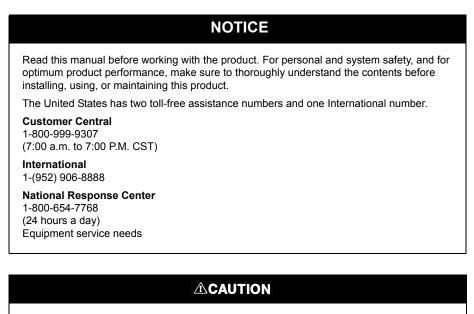
Model 3244MV[™] MultiVariable Temperature Transmitter with Profibus-PA

(Device Revision 2)


Profibus-PA

www.rosemount.com

Model 3244MV MultiVariable Temperature Transmitter with Profibus-PA

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact a local Rosemount Sales Representative.

ROSEMOUNT[®]

Reference Manual 00809-0100-4799, Rev BA

September 2002

Table of Contents

SECTION 1 Introduction	Using this Manual
SECTION 2 Installation	Safety Messages2-1Warnings2-1Considerations2-2General2-2Electrical2-2Power Supply2-2Power Filter2-2Mechanical2-2Mounting2-2Access Requirements2-2Tagging2-2Environmental2-3Temperature Environments2-3Moist or Corrosive Environments2-4Mounting and Installation2-4Typical North American Installation2-5Typical European Installation2-6Connect the Wiring and Power Up2-7Field Wiring2-7Grounding2-8Shielded Wire2-8Surges/Transients2-8Surges/Transients2-8
SECTION 3 Commissioning	Sensor Connections 2-9 RTD or Ohm Inputs 2-9 Thermocouple or Millivolt Inputs 2-9 Set the Switches 2-10 Security 2-10 Simulate 2-10 Safety Messages 3-1 Warnings 3-1 Installation Procedure 3-2 Profibus Device Description and GSD File 3-2 Changing the Mode of a Block 3-3
	Physical Block

	Transducer Block3-3Al blocks3-32-point trim3-4Parameter blocks3-4Al Block (Slots 6, 7, 8)3-4Physical Block (Slot 2)3-6Transducer 1 (Sensor 1) and Transducer 2 (Sensor 2) Block (Slots 3 and 4)3-7Transducer 3 (Differential) Block (Slot 5)PV Status Byte Codes3-12
SECTION 4	Safety Messages
Maintenance	Warnings
Wantenance	Hardware
	Diagnostics
	Maintenance
	Sensor Checkout
	Electronics Housing
	Disassembly
	Removing the Profibus-PA Electronics Module Assembly 4-3
	Assembly
	Replacing the Profibus-PA Electronics Module Assembly 4-4
APPENDIX A	Specifications
Specifications and	FunctionalA-1 Profibus-PAA-2
Reference Data	Performance
	Physical
	Dimensional Drawings
	Mounting Brackets
	Ordering Information
	Transmitter
	Spare Parts List
	Tagging
	Hardware Tag
	Options
	Custom Transmitter Configuration (Option Code C1)A-10
	Trim to Specific Rosemount RTD Calibration Schedule
	(Transmitter-to-Sensor Matching) (option code C2) A-10
	Five Point Calibration (option code C4)
	Trim to Special non-Standard Sensor (option code C7) A-10 Mounting Brackets (option codes B4 and B5)
	External Ground Lug Assembly (option code G1)
APPENDIX B	Hazardous Locations Certifications
	Installation Drawings
Approvals	

Reference Manual

00809-0100-4799, Rev BA September 2002

Section 1	Introduction			
	Using this Manualpage 1-1 Overviewpage 1-2			
USING THIS MANUAL	This manual is intended to assist in installing, operating, and maintaining Rosemount [®] Model 3244MV MultiVariable Temperature Transmitters with Profibus-PA.			
	Section 2: Installation			
	Considerations			
	Mounting and Installation			
	• Wiring			
	Power			
	Switches			
	Section 3: Commissioning			
	Profibus-PA Installation			
	Configuration			
	Parameter Blocks			
	Section 4: Maintenance			
	Diagnostic messaging			
	Maintaining the hardware			
	Appendix A: Specifications and Reference Data			
	Specifications			
	Dimensional Drawings			
	Tagging Options			
	Options			
	Appendix B: Approvals Hazardous Locations Certificates			
	Hazardous Locations CertificatesInstallation Drawings			
	• Installation Drawings			

OVERVIEW

Transmitter	Enhanced measurement capability allows the Model 3244MV to communicate multiple variables to a Profibus-PA host or configuration tool. This temperature transmitter has the ability to accept simultaneous inputs from two temperature sensing elements. The differential temperature measurement capability can be used to detect sensor drift in a dual-element sensor. The Model 3244MV with Profibus-PA combines the effects of transmitter drift, sensor interchangeability error, temperature effects, and reference accuracy to better account for actual process conditions and to assure maximum accuracy.				
	The Model 3244MV with Profibus-PA provides superior performance in non-critical applications involving basic process monitoring as well as simultaneous measurement of separate and independent temperature po- with one transmitter. With this feature instrument costs are reduced by as much as 50 percent. In addition, the multi-drop capability of Profibus-PA results in additional savings through reduced wiring costs.				
PROFIBUS Technology	Profibus-PA is an all digital, serial, two-way communication system that interconnects field equipment such as sensors, actuators, and controllers. Profibus-PA is a Local Area Network (LAN) for instruments used in both process and manufacturing automation. The profibus environment is the base level group of digital networks in the hierarchy of plant networks.				
	Profibus-PA communication retains the desirable features of the 4–20 mA analog system, including a standardized physical interface to the wire, bus-powered devices on a single pair of wires, and intrinsic safety options. It also enables additional capabilities, such as the following:				
	 increased capabilities due to full digital communications 				
	 reduced wiring and wire terminations due to multiple devices on one pair of wires 				
	 increased selection of suppliers due to interoperability 				
	 reduced loading on control room equipment with the distribution of 				

some control and input/output functions to field devices

Reference Manual

00809-0100-4799, Rev BA September 2002

Section 2 Installation

Safety Messages	page 2-1
Considerations	page 2-2
Mounting and Installation	page 2-4
Connect the Wiring and Power Up	page 2-7
Set the Switches	page 2-10

SAFETY MESSAGES

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Please refer to the following safety messages before performing an operation preceded by this symbol.

Warnings

Failure to follow these installation guidelines could result in death or serious injury:
 Make sure only qualified personnel perform the installation.

Explosions could result in death or serious injury:

- Do not remove the transmitter cover in explosive atmospheres when the circuit is live.
- Verify that the operating atmosphere of the transmitter is consistent with the appropriate hazardous locations certifications.
- Both transmitter covers must be fully engaged to meet explosion-proof requirements.

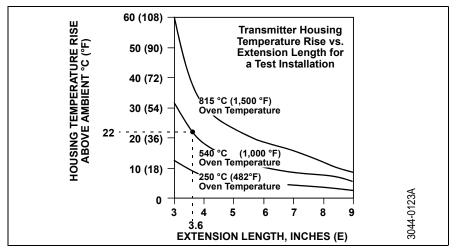
Electrical shock could cause death or serious injury. If the sensor is installed in a high-voltage environment and a fault condition or installation error occurs, high voltage may be present on transmitter leads and terminals.

• Use extreme caution when making contact with the leads and terminals.

Process leaks could result in death or serious injury:

- Install and tighten thermowells or sensors before applying pressure, or process leakage may result.
- Do not remove the thermowell while in operation. Removing while in operation may cause process fluid leaks.

CONSIDERATIONS


General	Electrical temperature sensors such as RTDs and thermocouples produce low-level signals proportional to temperature. The Model 3244MV temperature transmitter converts the analog sensor signal to a digital signal that is relatively insensitive to lead length and electrical noise. This current signal is then transmitted over the bus to the configuration device and the control room.			
Electrical	Proper electrical installation is necessary to prevent errors due to sensor lead resistance and electrical noise. Shielded, twisted cable should be used for best results in electrically noisy environments. Refer to "Sensor Connections" on page 2-9 for more information.			
	Power Supply			
	The transmitter requires between 9 and 32 V dc to operate and provide complete functionality. The dc power supply should provide power with less than 2% ripple.			
	Power Filter			
	A profibus segment requires a power conditioner to isolate the power supply filter and decouple the segment from other segments attached to the same power supply.			
Mechanical	The Model 3244MV transmitter can be mounted directly to the sensor or apart from the sensor using an optional mounting bracket. Using the bracket, the transmitter can be mounted either to a flat surface or to a 2-inch diameter pipe (see "Mounting Brackets" on page A-7).			
	Mounting			
	The transmitter may require supplementary support under high-vibration conditions, particularly if used with extensive thermowell lagging or long extension fittings. Pipe-stand mounting, using one of the optional mounting brackets, is recommended for use in high-vibration applications.			
	Access Requirements			
	When choosing an installation location and position, take into account the need for access to the transmitter.			
	Electronics Housing Mount the transmitter so the terminal side and terminal side is accessible. Be sure to allow adequate clearance for cover removal. When adding a LCD meter, mount the circuit-side of the transmitter in a visible position.			
	Tagging			
	Commissioning Tag The Model 3244MV has been supplied with a removable commissioning tag that contains both the Device ID and a space to record the device tag. The Device ID is a unique code that identifies a particular device in the absence of a device tag. The device tag is used as an operational identification for the device and is usually defined by the Piping and Instrumentation Diagram (P & ID).			

When commissioning more than one device on a profibus segment, it can be difficult to identify which device is at a particular location. The removable tag provided with the transmitter can aid in this process by linking the Device ID and a physical location. The installer should note the physical location in both places on the removable commissioning tag and tear off the bottom portion. This should be done for each device on the segment. The bottom portion of the tags can be used for commissioning the segment in the control system.

Environmental Temperature Environments

The transmitter will operate within specifications for ambient temperatures between -40 and 185 °F (-40 and 85 °C). In a direct mounting configuration, heat from the process is transferred from the thermowell to the transmitter housing. If the expected process temperature is near or beyond the specification limits, consider the use of additional thermowell lagging, an extension nipple, or a remote mounting configuration to isolate the transmitter from these excessive temperatures. Figure 2-1 provides an example of the relationship between transmitter housing temperature rise and extension length. Use Figure 2-1 and the accompanying example to determine adequate thermowell extension length.

Figure 2-1. Transmitter Housing Temperature Rise

EXAMPLE:

The rated temperature specification is 85 °C. If the maximum ambient temperature is 40 °C and the temperature to be measured is 540 °C, the maximum allowable housing temperature rise is the rated temperature specification limit minus the existing ambient temperature (85 - 40), or 45 °C.

As shown in Figure 2-1, an extension (E) dimension of 3.6 inches will result in a housing temperature rise of 22 °C. An "E" dimension of 4 inches would therefore be the minimum recommended length and would provide a safety factor of about 25 °C. A longer "E" dimension, such as 6 inches, would be desirable in order to reduce errors caused by transmitter temperature effect, although in that case the transmitter would probably require extra support. If a thermowell with lagging is used, the "E" dimension may be reduced by the length of the lagging.

3144-0430B

Poured Conduit Seal


(Where Required)

Moist or Corrosive Environments

The Model 3244MV has a highly reliable, dual-compartment housing designed to resist moisture and corrosives. The electronics module assembly is mounted in a compartment that is isolated from the terminal side conduit entries. O-ring seals protect the interior of each compartment from the environment when the covers are installed. In humid environments it is possible for moisture to accumulate in conduit lines and drain into the housing.

Proper installation of the transmitter can ensure maximum operation and service life. It can also have a significant impact on preventing moisture from accumulating in the housing. Refer to Figures 2-2 and 2-3 before mounting the transmitter.

Mount the transmitter at a high point in the conduit run so moisture from the conduits will not drain into the housing. If the transmitter is mounted at a low point in the conduit run the terminal compartment could fill with water. In some instances the installation of a poured conduit seal, such as the one pictured in Figure 2-3, is advisable. Remove the terminal compartment cover periodically and inspect the transmitter for moisture damage and corrosion.

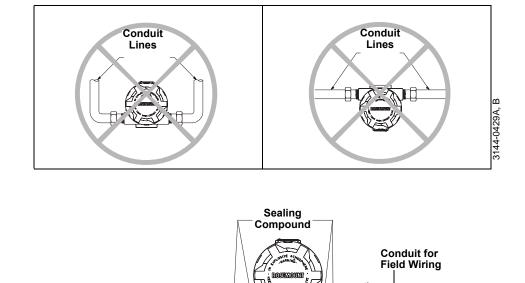
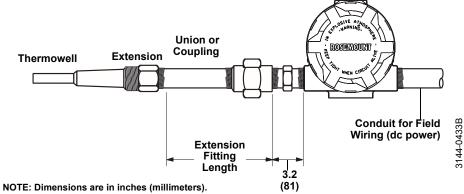


Figure 2-3. Process Mounting with Drain Seal

MOUNTING AND INSTALLATION

Installation consists of mounting the transmitter and sensor and making electrical connections.

Thermowell


Use the typical North American process mounting configuration illustrated in "Typical North American Installation" on page 2-5 or the typical European process mounting configuration illustrated in "Typical European Installation" on page 2-6.

Sensor Hex

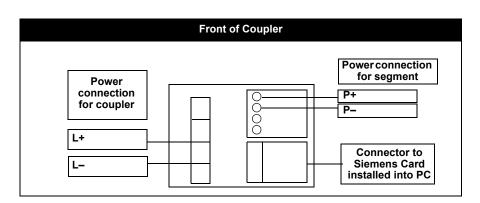
Union Coupling with Extension

	s t	shie ran:	transmitter locations remote from the sensor, use conduit or suitable lded cable and cable glands between the sensor and transmitter. The smitter accepts male conduit fittings with $^{1}/_{2}$ –14 NPT, M 20 \times 1.5 (CM 20), 13.5 (PG 11), or JIS G $^{1}/_{2}$ threads.
Typical North American Installation		1.	Mount the thermowell to the pipe or process container wall. Be sure to tighten thermowells and sensors. Perform a leak check before starting the process.
		2.	Attach any necessary unions, couplings, and extension fittings. Be sure to seal the fitting threads with silicone or tape (if required).
		3.	Screw the sensor into the thermowell or directly into the process (depending on installation requirements).
		4.	Verify all sealing requirements for severe environments or to satisfy code requirements.
		5.	Attach the transmitter to the thermowell/sensor assembly. Be sure to seal all threads with silicone or tape (if required).
		6.	Pull sensor leads through the extensions, unions, or couplings into the terminal side of the transmitter housing.
		7.	Install field wiring conduit to the remaining transmitter conduit entry.
	\triangle	8.	Pull the field wiring leads into the terminal side of the transmitter housing. Avoid contact with the leads and terminals.
	Â	9.	Attach the sensor leads to the transmitter sensor terminals. Attach the power leads to the transmitter power terminals. Avoid contact with the leads and terminals.
		10.	Attach and tighten both transmitter covers. Both transmitter covers must be fully engaged to meet explosion-proof requirements.
Figure 2-4. Typical North			

American Mounting Configuration.

NOTE

The National Electrical Code requires that a barrier or seal be used in addition to the primary (sensor) seal to prevent process fluid from entering the electrical conduit and continuing to the control room. Professional safety assistance is recommended for installation in potentially hazardous processes.


Typical European Installation	Â	 Mount the thermowell to the pipe or the process container wall. Install and tighten thermowells and sensors. Perform a leak check before starting the process.
		2. Attach a connection head to the thermowell.
		3. Insert the sensor into the thermowell and wire it to the connection head. The wiring diagram is located on the inside of the connection head.
		4. Mount the transmitter to a 2-inch (50 mm) pipe or a suitable panel using one of the optional mounting brackets. The B4 bracket is shown in Figure 2-5.
		5. Attach cable glands to the shielded cable running from the connection head to the transmitter conduit entry.
		6. Run the shielded cable from the opposite conduit entry on the transmitter back to the control room.
		 Insert the shielded cable leads through the cable entries into the connection head and the transmitter. Connect and tighten the cable glands.
		8. Connect the shielded cable leads to the connection head terminals (located inside of the connection head) and the sensor wiring terminals (located inside of the transmitter housing). Avoid contact with the leads and the terminals.
Figure 2-5. Typical European Process Mounting Configuration.		Cable Cable Cable

Shielded Cable from Sensor to Transmitter

Shielded Cable from Transmitter to Control Room B4 Mounting Bracket

CONNECT THE WIRING AND POWER UP

Field Wiring	All power to the transmitter is supplied over the signal wiring. Signal wiring should be shielded, twisted pair for best results. Do not run unshielded signal wiring in conduit or open trays with power wiring or near heavy electrical equipment. Do not remove the transmitter cover in explosive atmospheres when the circuit is live.
	⚠ If the sensor is installed in a high-voltage environment and a fault condition or installation error occurs, the sensor leads and transmitter terminals could carry lethal voltages. Use extreme caution when making contact with the leads and terminals.
	NOTE Do not apply high voltage (e.g. ac line voltage) to the transmitter terminals. Abnormally high voltage can damage the unit. (Sensor and transmitter power terminals are rated to 42.4 V dc.)
Power Connections	Use ordinary copper wire of sufficient size to ensure that the voltage across the transmitter power terminals does not drop below 9 V dc. To power the transmitter, connect the power leads to the terminals marked "+" and "T" as shown in Figure 2-7. The power terminals are polarity insensitive, which means the electrical polarity of the power leads does not matter when connecting to the power terminals. When wiring to screw terminals, the use of crimped lugs is recommended. Tighten the terminal screws to ensure adequate contact. No additional power wiring is needed.

Figure 2-6. Hardware Setup

Figure 2-7. Transmitter Terminal Block

Grounding

Transmitters are electrically isolated to 500 V ac rms. Ground the signal wiring at any single point, if desired. When using a grounded thermocouple, the grounded junction serves as this point.

NOTE

Do not ground the signal wire at both ends.

Shielded Wire

Recommended grounding techniques for shielded wire usually call for a single grounding point for each shielded wire to avoid grounding the loop. The following two examples employ the single point grounding technique:

Example 1

- Connect the signal wiring shield to the sensor wiring shield. 1.
- Ensure that the two shields are tied together and electrically isolated 2. from the transmitter housing.
- 3. Ground the shield at power supply end.

Example 2

- Connect the sensor wiring shield to the ground terminal (located 1 inside the terminal compartment of the transmitter housing).
- 2. Cut the signal wiring shield and isolate from the transmitter housing.
- 3. Grounded the shield at the power supply end only. Never connect the shield for the signal wiring to the ground terminal inside the transmitter housing.

Transmitter Housing

Ground the transmitter housing in accordance with local electrical requirements. The internal ground terminal is standard. An optional external ground lug assembly (option code G1) can also be ordered if needed. This external grounding method is recommended when using the optional transient protector (option code T1).

Surges/Transients The transmitter will withstand electrical transients usually encountered in static discharges or induced switching transients. However, high-energy transients, such as those induced in wiring from nearby lightning strikes, can damage both the transmitter and the sensor.

> A transient protection will be available at a later date for adding to the Model 3244MV with Profibus-PA.

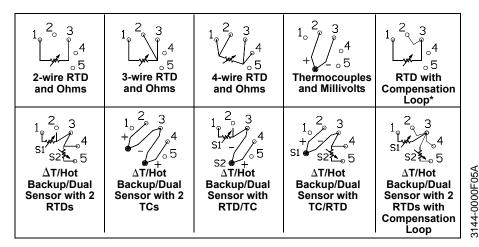
Sensor Connections

The Model 3244MV transmitter is compatible with many RTD and

- A thermocouple sensor types. Figure 2-8 shows the correct sensor terminal input connections on the transmitter. To ensure an adequate sensor connection, anchor the sensor lead wires beneath the flat washer on the terminal screw.
- A If the sensor is installed in a high voltage environment and a fault condition or installation error occurs, the sensor leads and transmitter terminals could carry lethal voltages. Use extreme caution when making contact with the leads and terminals.

RTD or Ohm Inputs

Various RTD configurations, including 2-wire, 3-wire, 4-wire, and compensation loop designs, are used in industrial applications. If the transmitter is mounted remotely from a 3- or 4-wire RTD, it will operate within specifications, without recalibration, for lead wire resistances of up to 10 ohms per lead (equivalent to 1,000 feet of 20 AWG wire). In this case, the leads between the RTD and transmitter should be shielded. If using only two leads (or a compensation loop lead wire configuration), both RTD leads are in series with the sensor element, so significant errors can occur if the lead lengths exceed one foot of 20 AWG wire.


Thermocouple or Millivolt Inputs

For direct-mount applications, connect the thermocouple directly to the transmitter. If mounting the transmitter remotely from the sensor, use appropriate thermocouple extension wire. Make connections for millivolt inputs with copper wire. Use shielding for long runs of wire.

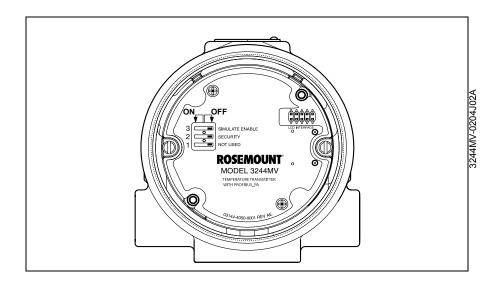
NOTE

The use of two grounded thermocouples with a Model 3244MV is not recommended. For applications in which the use of two thermocouples is desired, connect either two ungrounded thermocouples, one grounded and one ungrounded thermocouple, or one dual element thermocouple.

Figure 2-8. Transmitter Sensor Wiring.

* The transmitter must be configured for a 3-wire RTD in order to recognize an RTD with a compensation loop.

SET THE SWITCHES


Security

Simulate

After the transmitter is configured, it is possible to protect the configuration data from unwarranted changes. Each transmitter is equipped with a security switch that can be positioned "ON" to prevent the accidental or deliberate change of configuration data. The switch is located on the front side of the electronics module and is labeled SECURITY (see Figure 2-9).

The simulate switch is used in conjunction with the Analog Input (AI) function block. This switch is used to simulate the temperature measurement and is used as a lock-out feature for the AI function block. To enable the simulate feature, the switch must transition from "OFF" to "ON" *after* power is applied to the transmitter (see Figure 2-9). This feature prevents the transmitter from being accidentally left in simulator mode.

Figure 2-9. Transmitter Switch Locations.

Reference Manual

00809-0100-4799, Rev BA September 2002

Model 3244MV

Section 3 Commissioning

Safety Messages	bage 3-1
Installation Procedure	bage 3-2
Configuration	bage 3-3
Parameter blocksp	bage 3-4
PV Status Byte Codes	bage 3-12

SAFETY MESSAGES

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Please refer to the following safety messages before performing an operation preceded by this symbol.

Warnings

A WARNING Failure to follow these installation guidelines could result in death or serious injury:

Make sure only qualified personnel perform the installation.

Explosions could result in death or serious injury:

- Do not remove the transmitter cover in explosive atmospheres when the circuit is live.
- Verify that the operating atmosphere of the transmitter is consistent with the appropriate hazardous locations certifications.
- Both transmitter covers must be fully engaged to meet explosion-proof requirements.

Electrical shock could cause death or serious injury. If the sensor is installed in a high-voltage environment and a fault condition or installation error occurs, high voltage may be present on transmitter leads and terminals.

• Use extreme caution when making contact with the leads and terminals.

Process leaks could result in death or serious injury:

- Install and tighten thermowells or sensors before applying pressure, or process leakage may result.
- Do not remove the thermowell while in operation. Removing while in operation may cause process fluid leaks.

Model 3244MV

INSTALLATION PROCEDURE	Specific installation procedures use Siemens' PDM Configuration tool as a reference. For other configuration tools, use that products reference manual.		
	All devi	ces are shipped with a default address of 126.	
Profibus Device Description and GSD File	Use the GSD fil	e following steps to install the Profibus Device Description and e.	
	1.	Go to the Rosemount web site, located at http://www.rosemount.com/products/temperature/m3244pa.html .	
	2.	Download the Rosemount 3244 DD zip file.	
	3.	Read the "read me" file on how to install DDs and GSD files. (It is important to read this file because it is unique to each Profibus- PA interface tool.)	
	4.	Click the "Next" button when the program begins.	
	5.	Provide the path "c:\Temp\3244MVM.devices at the appropriate prompt.	
	6.	Select "Search in" and click Next	
	7.	Indicate the device where the DD is to be installed (in this case select 3244MVM(PA).	
	8.	Click "Finish."	
	9.	Close the application when installation is completed.	
Changing the Mode of	Use the	e following steps to change the mode of a block.	
a Block	1.	Select "Device Mode," located under the "Device" pull-down menu.	
	2.	Choose "Out of Service (O/S)" to change parameter settings.	
	3.	Indicate the mode desired for the block and press the download button.	
	4.	Select the "Load into PG/PG" option, located under the "Device" pull-down menu.	
	5.	Upon completion, the block will be in the mode set.	
	NOTE Changi	ng the mode of one transducer block changes all the transducer blocks	

to that same mode.

CONFIGURATION

Physical Block	1.	Place the physical block into "Out of Service (O/S)" mode.
	2.	Select the "Display" mode, located under the "Device"
	2	pull-down menu.
	3.	Turn on the valves to be displayed. Set the desired decimal place.
	4.	Download the device.
	5.	Select the "Load into PG/PG" option (UPLOAD), located under the "Device" pull-down menu.
	6.	Place the Physical Block into Auto mode.
Transducer Block	1.	Select the "Master Reset" option, located under the "Device" pull-down menu.
	2.	Input the following as desired
		to select restart with defaults
		4 to restart processor
	3.	Click "download" to download the device.
	4.	Once the device has restarted, click close.
	5.	Select "Change Sensor Type," method located under the "Device" pull-down menu. When this method begins, select the desired sensor type and the connection.
	6.	Perform step five for all sensors.
	7.	Select the "Load into PG/PG" option (UPLOAD), located under the "Device" pull-down menu.
	8.	Place the transducer block into "Out of Service (O/S)" mode. Set the filter time constant to the desired value (perform for all transducer blocks).
	9.	Select the "Load into PG/PG" option (UPLOAD), located under the "Device" pull-down menu.
	10.	Place the Transducer block into Auto mode.
Al blocks	1.	Place the AI block into "Out of Service (O/S)" mode and then UPLOAD.
	2.	Configure the channel for each block by right-clicking on the parameter for each block. Select "On-line Option" and then the channel. Choose a option and UPLOAD.
	3.	Right-click on the "Process Scale Variable" parameter. Indicate the desired upper, lower and unit values. Download these parameters onto the device (performed for each block). UPLOAD.
	4.	Right-click on the "Output Signal" parameter. Indicate the desired upper, lower and unit values. Download these parameters onto the device (performed for each block).
	5.	Select the "Load into PG/PG" option (UPLOAD), located under the "Device" pull-down menu.
	6.	To set User Warning and Alarm Limits, right-click on "Upper Limit Alarm," "Upper Ilmit Warning," "Lower Limit Warning," and "Lower Limit Alarm." Select values and UPLOAD.
	7.	Place the AI block into Auto mode.

CALIBRATION

2-point trim

The following provide the steps necessary to calibrate the transmitter:

- 1. Place the sensor transducer blocks into "Out of Service (O/S)" mode.
- 2. Select the "Calibration" option, located under the "Device" pull-down menu.
- 3. Choose the sensor to calibrate and click the calibrate button.
- 4. Select the "USER_cal" option in the Input window. Click OK.
- 5. Read the instructions. Click OK.
- 6. Set the new value for the "Lower_cal point." Click OK.
- 7. Repeat steps 4 6 to perform the same task for the "Upper_cal point."
- 8. Close the calibration window when finished performing calibrations.

NOTE

To perform a single-point calibration, click the cancel button when the two Upper_cal point windows are open.

PARAMETER BLOCKS

The following tables provide information regarding

- Al block (Slots 6, 7, 8)
- Physical blocks (Slot 2)
- Transducer 1 (Sensor 1 slot 3) and Transducer 2 (Sensor 2 slot 4) Blocks
- Transducer 3 (Differential) Block (Slot 5)

Al Block (Slots 6, 7, 8)

PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
0.1	BLOCK_OBJECT.Reserved	Contains the characteristics of the blocks.	R	Unsigned8	1
0.2	BLOCK_OBJECT.Block Object	Contains the characteristics of the blocks.	R	Unsigned8	1
0.3	BLOCK_OBJECT.Parent Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.4	BLOCK_OBJECT.Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.5	BLOCK_OBJECT.DD Reference	Contains the characteristics of the blocks.	R	Unsigned32	4
0.6	BLOCK_OBJECT.DD Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.7	BLOCK_OBJECT.Profile	Contains the characteristics of the blocks.	R	Unsigned16	2
0.8	BLOCK_OBJECT.Profile Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.9	BLOCK_OBJECT.Execution Time	Contains the characteristics of the blocks.	R	Unsigned8	1
0.10	BLOCK_OBJECT.Highest_Rel_Offset	Contains the characteristics of the blocks.	R	Unsigned16	2
0.11	BLOCK_OBJECT.Index View_1	Contains the characteristics of the blocks.	R	Unsigned16	2
0.12	BLOCK_OBJECT.Num. Of Views	Contains the characteristics of the blocks.	R	Unsigned8	1
1	ST_REV	A block has static block parameters that are not changed by the process. Values are assigned to this parameter during the configuration or optimization. The value of ST_REV must increase by 1 after every change of a static block parameter. This provides a check of the parameter revision.	R	Unsigned16	2
2	TAG_DESC	Every block can be assigned a textural TAG description. The TAG_DESC is the address of the block. The TAG_DESC must be unambiguous and unique in the Profibus system.	R/W	Octet(32)	32

Model 3244MV

Reference Manual

00809-0100-4799, Rev BA September 2002

DA Index				Dete Turne/	<u> Cino</u>
PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
3	STRATEGY	Grouping of Function Block. The STRATEGY field can be used to group blocks.	R/W	Unsigned16	2
4	ALERT_KEY	This parameter contains the identification number of the plant unit. It helps to identify the location (plant unit) of an event (crossing a limit).	R/W	Unsigned8	1
5	TARGET_MODE	The TARGET_MODE parameter contains desired mode normally set by a control application or an operator.	R/W	Unsigned8	1
6.2	MODE_BLK.actual	These blocks contain the actual normitted and			
6.3	MODE_BLK.permitted	These blocks contain the actual, permitted and normal modes of the block	R	DS-37	3
6.4	MODE_BLK.normal	normal modes of the block			
7	ALARM_SUM	This parameter contains the current state of the block alarms	R	DS-42	8
10	OUT	Value and status of the block output	R/W	DS-33	5
11	PV_SCALE	Conversion of the Process Variable into percent using the hand low scale values, engineering units code and number of digits tot he right of the decimal point. The engineering unit of PV_SCALE must be the same as the one of the related Transducer Block	R/W	DS-36	11
12	OUT_SCALE	The high and low scale values, units code, and number of digits to the right of the decimal point associated with OUT.	R/W	DS-36	11
14	CHANNEL	Reference to the active Transducer Block which provides the measurement value to the Function Block	R/W	Unsigned16	2
16	PV_FTIME	Filter time of the Process Variable	R/W	Float	4
19	ALARM_HYS	The amount the alarm value must return within the alarm limit before the associated active alarm condition clears.	R/W	Float	4
21	HI_HI_LIM	The setting of the alarm limit used to detect the HI HI alarm condition	R/W	Float	4
23	HI_LIM	The setting of the alarm limit used to detect the HI alarm condition	R/W	Float	4
25	LO_LIM	The setting of the alarm limit used to detect the LO alarm condition	R/W	Float	4
27	LO_LO_LIM	The setting of the alarm limit used to detect the LO LO alarm condition	R/W	Float	4
30	HI_HI_ALARM	The HI HI alarm data	R	DS-39	16
31	HI_ALARM	The HI alarm data	R	DS-39	16
32	LO_ALARM	The LO alarm data	R	DS-39	16
33	LO_LO_ALARM	The LO LO alarm data	R	DS-39	16
34	SIMULATE.	Simulate Status	R/W	DS-50	6

Physical Block (Slot 2)

PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
0.1	BLOCK_OBJECT.Reserved	Contains the characteristics of the blocks.	R	Unsigned8	1
0.2	BLOCK_OBJECT.Block Object	Contains the characteristics of the blocks.	R	Unsigned8	1
0.3	BLOCK_OBJECT.Parent Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.4	BLOCK_OBJECT.Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.5	BLOCK_OBJECT.DD Reference	Contains the characteristics of the blocks.	R	Unsigned32	4
0.6	BLOCK_OBJECT.DD Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.7	BLOCK_OBJECT.Profile	Contains the characteristics of the blocks.	R	Unsigned16	2
0.8	BLOCK_OBJECT.Profile Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.9	BLOCK_OBJECT.Execution Time	Contains the characteristics of the blocks.	R	Unsigned8	1
0.10	BLOCK_OBJECT.Highest_Rel_Offset	Contains the characteristics of the blocks.	R	-	2
0.11	BLOCK_OBJECT.Index View_1	Contains the characteristics of the blocks.	R	Unsigned16	2
0.12	BLOCK_OBJECT.Num. Of Views	Contains the characteristics of the blocks.	R	Unsigned8	1
1	ST_REV	A block has static block parameters that are not changed by the process. Values are assigned to this parameter during the configuration or optimization. The value of ST_REV must increase by 1 after every change of a static block parameter. This provides a check of the parameter revision.	R	Unsigned16	2
2	TAG_DESCRIPTION	Every block can be assigned a textural TAG description. The TAG_DESC is the address of the block. The TAG_DESC must be unambiguous and unique in the Profibus system.	R/W	Octet(32)	32
3	STRATEGY	Grouping of Function Block. The STRATEGY field can be used to group blocks.	R/W	Unsigned16	2
4	ALERT_KEY	This parameter contains the identification number of the plant unit. It helps to identify the location (plant unit) of an event (crossing a limit).	R/W	Unsigned8	1
5	TARGET_MODE	The TARGET_MODE parameter contains desired mode normally set by a control application or an operator.	R/W	Unsigned8	1
6.1	MODE_BLK.actual				
6.2	MODE_BLK.permitted	These blocks contain the actual, permitted and	R	DS-37	3
6.3	 MODE_BLK.normal	normal modes of the block			
7	ALARM_SUM	This parameter contains the current state of the block alarms	R	4*Octet(2)	8
8	SOFTWARE_REVISION	Software revision, includes a major, minor, and build revisions	R	Octet(16)	16
9	HARDWARE_REVISION	Hardware revision	R	Octet(16)	16
10	DEVICE_MAN_ID	Identification code of the field device manufacturer. 38 = Rosemount	R	Unsigned16	2
11	DEVICE_ID	Identification of the device: 3244 = Rosemount Model 3244 Temperature Transmitter	R	Octet(16)	16
12	DEVICE_SER_NUM	Serial number of the device (output board serial number)	R	Octet(16)	16
13	DIAGNOSIS	Detailed information of the device, bitwise coded. More than one message possible at once. If MSB of byte 4 is set to 1 than more diagnosis information is available in the DIAGNOSIS_EXTENSION parameter	R	Octet(4)	4
14	DIAGNOSIS_EXTENSION	Additional manufacturer specific information of the device, bitwise coded. More than one message possible at once.	R	Octet(6)	6
15	DIAGNOSIS_MASK	Definition of supported DIAGNOSIS information bits: 0 = not supported, 1 = supported	R	Octet(4)	4

00809-0100-4799, Rev BA September 2002

PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
16	DIAGNOSIS_MASK_EXTENSION	Definition of supported DIAGNOSIS_EXTENSION information bits: 0 = Not supported 1 = Supported	R	Octet(6)	6
17	DEVICE_CERTIFICATION	Certification of the field device	R/W	Octet(16)	16
18	SECURITY_LOCKING	Storage location for a password used by the host software to check if the device parameter is accessible – default value 0x2457	R/W	Unsigned16	2
19	FACTORY_RESET	Command for restarting device: 1 = Restart with default, 4 = Restart processor	W	Unsigned16	2
20	DESCRIPTOR	User-definable text to describe the device	R/W	Octet(32)	32
21	DEVICE_MESSAGE	user-definable message to the device or application in plant	R/W	Octet(32)	32
22	DEVICE_INSTALL_DATE	Date of installation of the device	R/W	Octet(8)	8
45	FINAL_ASSEMBLY_NUMBER	Final Assembly Number – Number that is used for identification purposes and is associated with the overall Field Devices	R/W	Unsigned32	4
22	DOWNLOAD_MODE	Gives access to the boot block code for the over-the-wire downloads	R/W	Unsigned8	1
47	DISPLAY_MODE	Provides interface to configure LCD display	R/W	Octet(1)	1

Transducer 1 (Sensor 1) and Transducer 2 (Sensor 2) Block (Slots 3 and 4)

PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
0.1	BLOCK_OBJECT.Reserved	Contains the characteristics of the blocks.	R	Unsigned8	1
0.2	BLOCK_OBJECT.Block Object	Contains the characteristics of the blocks.	R	Unsigned8	1
0.3	BLOCK_OBJECT.Parent Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.4	BLOCK_OBJECT.Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.5	BLOCK_OBJECT.DD Reference	Contains the characteristics of the blocks.	R	Unsigned32	4
0.6	BLOCK_OBJECT.DD Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.7	BLOCK_OBJECT.Profile	Contains the characteristics of the blocks.	R	Unsigned16	2
0.8	BLOCK_OBJECT.Profile Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.9	BLOCK_OBJECT.Execution Time	Contains the characteristics of the blocks.	R	Unsigned8	1
0.10	BLOCK_OBJECT.Highest_Rel_Offset	Contains the characteristics of the blocks.	R	Unsigned16	2
0.11	BLOCK_OBJECT.Index View_1	Contains the characteristics of the blocks.	R	Unsigned16	2
0.12	BLOCK_OBJECT.Num. Of Views	Contains the characteristics of the blocks.	R	Unsigned8	1
1	ST_REV	A block has static block parameters that are not changed by the process. Values are assigned to this parameter during the configuration or optimization. The value of ST_REV must increase by 1 after every change of a static block parameter. This provides a check of the parameter revision.	R	Unsigned16	2
2	TAG_DESC	Every block can be assigned a textural TAG description. The TAG_DESC is the address of the block. The TAG_DESC must be unambiguous and unique in the Profibus system.	R/W	Octet(32)	32
3	STRATEGY	Grouping of Function Block. The STRATEGY field can be used to group blocks.	R/W	Unsigned16	2
4	ALERT_KEY	This parameter contains the identification number of the plant unit. It helps to identify the location (plant unit) of an event (crossing a limit).	R/W	Unsigned8	1

Model 3244MV

00809-0100-4799, Rev BA September 2002

NumberParameterDescriptionAccessStructureBytes5TARGET_MODEThe TARGET_MODE parameter contains desiredRWUnsigned816.2MODE_BLK canualThese block somian the actual, permitted and normal modes of the blockRDS-3736.4MODE_BLK permittedThese block somian the actual, permitted and normal modes of the block alarmsRDS-3237ALARM_SUMThis parameter contains the current states of the block alarmsRDS-3358MEAS_VALUEMain measuring value, function of sensorsiasic. modes of the block alarmsRDS-33511SENSOR_MEAS_TYPESelect the typ of sensor (Cost) for Thermocuples, Rd, Pynometers or linear tunction of sensor (Cost) for Thermocuples, Rd, Pynometers or linear tunction of sensor. (Example: PT 100 = 560 °C)RUnsigned8122LOWER_SENSOR_LIMITMinimum sensor temperature: Physical upper limit tunction of sensor. (Example: PT 100 = -200 °C)RWUnsigned8123MEASURE_FILTERMeasuring filter parameter to suppress noise in recease temperatureRWUnsigned8124INPUT_FAULTGeference junction from internal to fixed valueRWUnsigned8125RJ_TYPESelect the upp of anarmeter to suppress noise in recease temperatureRWUnsigned8126RJ_TYPESelect the upp of anarmeter to suppress noise in researceRWUnsigned8126RJ_TYPESelect the inportance <th>PA Index</th> <th></th> <th></th> <th></th> <th>Data Type/</th> <th>Size –</th>	PA Index				Data Type/	Size –
e.2 MODE, BLK actual These blocks contain the actual, permitted and normal modes of the block R DS-37 3 6.4 MODE, BLK permitted These blocks contain the actual, permitted and normal modes of the block dams R DS-37 3 7 ALARM_SUM This parameter contains the current states of the SIGK R DS-33 5 8 MEAS_VALUE Main measuring value, function of sensors/asic, contains the current states of inear RW Unsigned8 1 11 SENSOR_TYPE Main measuring value, function of sensors/asic, response to the person of sensors/asic, response to the personse to the personse to the sensor (Code) for the temperature. (Code) for theremouse the response to the persons of sensors/asic, response to the personse to the sensor (Code) for theremouse to the temperature. (Example: FT 100 = 50°C) RW Unsigned8 1 20 TEMPERATURE_UNIT Select the unit of the temperature. (Example: FT 100 = 50°C) RW Insigned8 1 21 UPER_SENSOR_LIMIT Mainmum sensor temperature. (Example: FT 100 = 50°C) RW Insigned8 1 22 LOWER_SENSOR_LIMIT Measuring fitter parameter to suppress noise in RW Insigned8 1 23 RJ_TEMP Reference junction temperature. Physical upper limit, response to the sensor (2 = 4 wire sensor (1 = 3 wire sensor (Description	Access		
6.3MODEBLK normal normal mode of the blockThese blocks contain the actual, permitted and normal mode of the blockPDS-3736.4MODEBLK normalThis parameter contains the current states of the block alarmsRDS-4288MEAS_VALUEMain measuring value, function of sensors/asic, corrected by BIAS_1/2RDS-33511SENSOR_MEAS_TYPEMathematical function: Normal, average, differential form channel 1 and 2RWUnsigned 8120TEMPERATURE_UNITSelect the inty of sensor (Code) for Thermocouples, Rrd, Pyrometers or linear Maximum sensor temperature: Physical upper limit function of sensor. (Example: PT 100 = 250 °C)RWUnsigned 8122LOWER_SENSOR_LIMITMainimum sensor temperature: Physical lower limit function of sensor. (Example: PT 100 = -200 °C)RWFloat423MEASURE_FILTERMeasuring filter parameter to suppress noise in process temperature. Physical upper limit function of sensor. (Example: PT 100 = -200 °C)RWUnsigned 8124INPUT_FAULTMeasuring filter parameter to suppress noise in process temperature. ValueRWUnsigned 8125R.J_TEMPReference junction form internal to fixed valueRWUnsigned 8126R.J_TEMPReference junction form internal to fixed valueRWIonica426R.J_TEAULTThe subset of the temperature value desarrement usedRWIonica427R.J_LEAULTThe valu	5	TARGET_MODE	mode normally set by a control application or an	R/W	Unsigned8	1
0.3 whole_Bitk.nominnome and modes of the blockNDist of the block7ALARM_SUMThis parameter contains the current states of the RDS-4288MEAS_VALUEMain measuring value, function of sensors/asite, corrected by BAS_1/2RDS-33511SENSOR_MEAS_TYPEMathematical function: Normal, average, income corrected by BAS_1/2RWUnsigned B113SENSOR_TYPESelect the type of sensor (Code) for the temperature, Example: "C, "F, "K, "K, "C, Coding according HCFRUnsigned B120TEMPERATURE_UNITSelect the unit of the temperature, (Example: TC, "RFloat421UPPER_SENSOR_LIMITMaintum sensor temperature: Physical upper limit function of sensor. (Example: PT 100 = -200 °C)RFloat422LOWER_SENSOR_LIMITMaintum sensor temperature: Select the mont of supperses noise in process temperature. (Example: PT 100 = -200 °C)RWFloat423MEASURE_FILTERMeasuring filter parameter to suppress noise in material failures.RWUnsigned B124INPUT_FAULTSelect reference junction from internal to fixedRWUnsigned B125RJ_TYPESelect reference junction from internal to fixedRWUnsigned B126RJ_TYPEFixed temperature 0.1 key whole Measurement usedRWFloat427R_JOALUEFixed temperature 0.2 key sensor. 1 = 0 keyRWIonat428SENSOR_CONNECTIONThe value of the temperature probe. value<		-	These blocks contain the actual permitted and			
7.1 ALARM_SUM This parameter contains the current states of the block halows h				R	DS-37	3
Block larms8MEAS_VALUEMain messiving value, function of sensor/asis, differential form channel 1 and 2R.DS-33511SENSOR_MEAS_TYPEMathematical function: Normal, average, differential form channel 1 and 2R.WUnsigned8113SENSOR_TYPESelect the type of sensor (Code) for Thermcoules, Rrd, Pyrometers or linear (Cxample: PT 100 = 860 °C)R.WUnsigned8120TEMPERATURE_UNITSelect the unit of the temperature: Physical upper limit function of sensor. (Example: PT 100 = 860 °C)R.WR.SFloat421LOWER_SENSOR_LIMITMinimum sensor temperature: Physical lower limit function of sensor. (Example: PT 100 = 200 °C)R.WFloat422LOWER_SENSOR_LIMITMessuring Hitter parameter to suppress noise in material failures.R.WUnsigned8123MEASURE_FILTERMessuring function temperature (Example: PT 100 = 200 °C)R.WUnsigned8124INPUT_FAULTSelect reference junction from internal to fixed valueR.WUnsigned8125R.J_TEMPSelect reference junction from internal to fixed valueR.WUnsigned8126R.J_TEMPFixed temperature value I, in degree, of reference ion to individ values are: 0 = 2 wire sensor, 1 = 3 wire sensor, 2 wire sensor, 1 = 3 w			This perspector contains the surrent states of the	D	DS 42	0
11SENSOR_MEAS_TYPECorrected by BiAS_1/2RWWUnsigned8111SENSOR_MEAS_TYPEMathematical function. Normal, average, differential form channel 1 and 2RWWUnsigned8113SENSOR_TYPESelect the type of sensor (Code) for Thermcoules, Rdv. Pyrometers or linear (C, RMP), Coding according HCFRWWUnsigned8120TEMPERATURE_UNITSelect the unit of the temperature: (Example: °C, (Example: PT 100 = 480 °C)RB121UPPER_SENSOR_LIMIT (Example: PT 100 = 480 °C)Mathematical sensor temperature: Physical lower limit function of sensor. (Example: PT 100 = 200 °C)RFloat422MEASURE_FILTERMeasuring filter parameter to suppress noise in process temperature. (Example: PT 100 = 200 °C)RWWUnsigned8123MEASURE_FILTERMeasuring filter parameter to suppress noise in process temperature. (Example: PT 100 = 200 °C)RWWUnsigned8124INPUT_FAULTUsed to indicate memory ASIC, communication, or material tailures.RWWUnsigned8125R J_TEMPSelect reference junction from internal to fixed yalueRWWUnsigned8126R J_TYPESelect reference junction from internal to fixed yalueRWWUnsigned8128SENSOR_CONNECTIONThe number of wires for the temperature probe. Valud values are: 0 - 2 wire sensor, 1 = 3 wire sensor, 2 = 4 wire sensorRWWFloat441CAL_POINT_LOThe value of the entipreation inputs. Valid calibration		_	block alarms			
13Sensor TypeBelect the pop of sensor: (Code) for Thermocouples, Rrd., Pyrometers or linear Thermocouples, Rrd., Pyrometers or linearR/WUnsigned 8120TEMPERATURE_UNITSelect the unit of the temperature. (Example: "C. F, F, K, M, M)., Coding according HCFRUnsigned 16221UPPER_SENSOR_LIMITMaximum sensor temperature. (Physical upper limit function of sensor. (Example: PT 100 = 860 °C)RFloat422LOWER_SENSOR_LIMITMinimum sensor temperature: Physical upper limit function of sensor. (Example: PT 100 = -200 °C)R/WFloat423MEASURE_FILTER MEASURE_FILTERMeasuring filter parameter to suppress noise in material failures.R/WUnsigned 8124INPUT_FAULTUsed to indicate memory ASIC, communication, or valueR/WUnsigned 8125R.J_TEMPSelect reference junction from internal to fixed valueR/WUnsigned 8126R.J_VALUEFixed temperature value I, in degree, of reference punctionR/WUnsigned 8128SENSOR_CONNECTIONThe value of the temperature probe. Valid values are: 0 = 2 wire sensor, 1 = 2 wire sensor, 2 = 4 wire sensor sensor, 2 =	8	MEAS_VALUE		R	DS-33	5
20Thermocoupies, Rrd., Pyrometeris or linearNWUnsigneds120TEMPERATURE_UNITSelect the unit of the temperature. (Example: "C., F", "K, %). Coding according HCC"RUnsigned16221UPPER_SENSOR_LIMITMaximum sensor temperature: Physical upper limit function of sensor. (Example: PT 100 = 850 °C)RFloat422LOWER_SENSOR_LIMITMinimum sensor temperature: Physical lower limit function of sensor. (Example: PT 100 = -200 °C)RWFloat423MEASURE_FILTERMeasuring filter parameter to suppress noise in process temperature. Unsigned8RWFloat424INPUT_FAULTUsed to indicate memory ASIC, communication, or valueRWUnsigned8125RJ_TEMPReference junction temperature valueRWFloat426R_VALUESelect reference junction from internat to fixed valueRWUnsigned8127R_VALUEFixed temperature value I, in degree, of reference value of the Primary Value Measurement used value of the Primary Value Measurement used calibration point.RWFloat441CAL_POINT_HIThe value of the Primary Value Measurement used calibration point.RWFloat443CAL_POINT_LOThe value of the rimary Value Measurement used calibration point.RWFloat444SENSOR_SNThe value of the rimary Value Measurement used calibration inputs. Valid calibration inpits. Valid calibration inpits. Valid calibration inpits. Valid calibratio	11	SENSOR_MEAS_TYPE		R/W	Unsigned8	1
PF. *K. %) Cooling according HCFProvide the service of the service o	13	SENSOR_TYPE		R/W	Unsigned8	1
21 UPPER_SENSOR_LIMIT Maximum sensor temperature: Physical upper limit function of sensor. (Example: PT 100 = 850 °C) R Float 4 22 LOWER_SENSOR_LIMIT Minimum sensor temperature: Physical lower limit function of sensor. (Example: PT 100 = -200 °C) R Float 4 23 MEASURE_FILTER Measuring filter parameter to suppress noise in process temperature. RVW Unsigned8 1 24 INPUT_FAULT Used to indicate memory ASIC, communication, or material failures. RVW Unsigned8 1 25 RJ_TEMP Reference junction temperature suppress noise in process temperature. RVW Unsigned8 1 26 RJ_TYPE Select reference junction from internal to fixed value RVW Unsigned8 1 27 RJ_VALUE Fixed temperature value I, in degree, of reference procino RVW Float 4 28 SENSOR_CONNECTION The number of wires for the temperature probe. Value RVW Float 4 41 CAL_POINT_HI The value of the Primary Value Measurement used for the low calibration point. RVW Float 4 43 CAL_POINT_LO The value of the calibration inputs. Valid calibration units are the follow	20	TEMPERATURE_UNIT		R	Unsigned16	2
Landfunction of sensorfunction of sensorfunction of sensorfunction of sensorfunction of sensorfunction is sensorfloat423MEASURE_FILTERprocess temperaturesuppress noise in process temperature.RWIosigned8124INPUT_FAULTUsed to indicate memory ASIC, communication, or material failures.RWUnsigned8125RJ_TEMPReference junction temperatureRFloat426RJ_TYPESelect reference junction from internal to fixedRWUnsigned8127RJ_VALUEFixed temperature value I, in degree, of reference valueRWFloat428SENSOR_CONNECTIONThe number of wires for the temperature probe. Valid values are: 0 = 2 wire sensor, 1 = 3 wire sensor, 2 = 4 wire sensorRWFloat429CAL_POINT_HIThe value of the Primary Value Measurement used for the high calibration point.RWFloat441CAL_POINT_LOThe value of the Primary Value Measurement used for the low calibration high and low points.RWFloat443CAL_UNITThe unitis used for the calibration inputs. Valid calibration high and low points.RWUnsigned16244SENSOR_SNSena MassiSena MassiSena MassiRW0ctet(32)3244SENSOR_CAL_METHODSena Mumber of the sensorRWOctet(32)3245SENSOR_CAL_METHODSena Mumber of the sensorRWOctet(32)3244	21	UPPER_SENSOR_LIMIT	function of sensor.	R	Float	4
24INPUT_FAULTUsed to indicate memory ASIC, communication, or material failures.R/WUnsigned8125RJ_TEMPReference junction temperatureRFloat426RJ_TYPESelect reference junction from internal to fixed valueR/WUnsigned8127RJ_VALUEFixed temperature value I, in degree, of reference junctionR/WFloat428SENSOR_CONNECTIONFixed temperature value I, in degree, of reference junctionR/WUnsigned8128SENSOR_CONNECTIONThe number of wires for the temperature probe. Valid values are: 0 = 2 wire sensor, 1 = 3 wire sensor, 2 = 4 wire sensorR/WFloat440CAL_POINT_HIThe value of the Primary Value Measurement used for the high calibration point.R/WFloat441CAL_POINT_LOThe value of the Primary Value Measurement used for the low calibration niputs. Valid calibration point.R/WFloat443CAL_UNITThe units used for the calibration inputs. Valid calibration units are the following: 33 = 'F 34 = 'R 	22	LOWER_SENSOR_LIMIT	function of sensor.	R	Float	4
Instribution material failures.Material failures.Reference junction temperatureRFloat426RJ_TYPESelect reference junction from internal to fixed valueRWUnsigned8127RJ_ALUEFixed temperature value l, in degree, of reference junctionRWFloat428SENSOR_CONNECTIONThe number of wires for the temperature probe. Valid values are: 0 - 2 wire sensor, 1 = 3 wire sensor, 2 = 4 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 2 = 0 wire sensor, 1 = 3 wire sensor, 2 = 0 wire sensor, 2 = 0 wire <b< td=""><td>23</td><td>MEASURE_FILTER</td><td></td><td>R/W</td><td>Float</td><td>4</td></b<>	23	MEASURE_FILTER		R/W	Float	4
26RJ_TYPESelect reference junction from internal to fixed valueR/WUnsigned8127RJ_VALUEFixed temperature value I, in degree, of reference junctionR/WFloat428SENSOR_CONNECTIONThe number of wires for the temperature probe. Valid values are: 0 = 2 wire sensor, 1 = 3 wire sensor, 2 = 4 wire sensorR/WUnsigned8140CAL_POINT_HIThe value of the Primary Value Measurement used for the high calibration point.R/WFloat441CAL_POINT_LOThe value of the Primary Value Measurement used for the high calibration point.R/WFloat442CAL_MIN_SPANThe minimum span that must be used between the calibration units are the following: 35 = K 32 = °C 36 = mV 37 = Ohm 57 = Percent 250 = Not usedR/WWursigned8244SENSOR_SNSerial number of the sensorR/WUnsigned8145SENSOR_CAL_METHODThe last method used to calibration nor user specified): 103 = Factory trip standard, 104 = User trim standardR/WUnsigned81	24	INPUT_FAULT	-	R/W	Unsigned8	1
value27RJ_VALUEFixed temperature value I, in degree, of reference junctionR/WFloat428SENSOR_CONNECTIONThe number of wires for the temperature probe. valid values are: 0 = 2 wire sensor, 1 = 3 wire sensor, 2 = 4 wire sensorR/WUnsigned8140CAL_POINT_HIThe value of the Primary Value Measurement used for the high calibration point.R/WFloat441CAL_POINT_LOThe value of the Primary Value Measurement used for the low calibration point.R/WFloat442CAL_MIN_SPANThe minimum span that must be used between the calibration units are the following: 35 = K 32 = °C 33 = °F 36 = mVR/WFloat443SENSOR_SNSerial number of the sensorR/WUnsigned8244SENSOR_GAL_METHODSerial number of the sensorR/WOctet(32)3245SENSOR_GAL_METHODThe last method used to calibration or user specified): 103 = Factory trip standard, 104 = User trimR/WUnsigned81	25	RJ_TEMP	Reference junction temperature		Float	4
28SENSOR_CONNECTIONThe number of wires for the temperature probe. Valid values are: 0 = 2 wire sensor. 1 = 3 wire sensor. 2 = 4 wire sensorR/WUnsigned8140CAL_POINT_HIThe value of the Primary Value Measurement used for the high calibration point.R/WFloat441CAL_POINT_LOThe value of the Primary Value Measurement used for the low calibration point.R/WFloat442CAL_MIN_SPANThe minimum span that must be used between the calibration units are the following: 35 = K 32 = °C 33 = °F 34 = °RR/WHoat443SENSOR_SNSerial number of the sensorR/WUnsigned16244SENSOR_CAL_METHODThe last method used to calibrate the device. (Example: Factory calibration or user specified): 103 = Factory trip standard, 104 = User trim standardR/WOctet(32)32	26	RJ_TYPE		R/W	Unsigned8	1
Valid values are: 0 = 2 wire sensor. 1 = 3 wire sensor, 2 = 4 wire sensorRiveFloat440CAL_POINT_HIThe value of the Primary Value Measurement used for the high calibration point.R/WFloat441CAL_POINT_LOThe value of the Primary Value Measurement used for the low calibration point.R/WFloat442CAL_MIN_SPANThe minimum span that must be used between the calibration niputs. Valid calibration units are the following: 35 = K 32 = °C 33 = °F 34 = °RR/WUnsigned16243CAL_UNITThe units used for the calibration inputs. Valid calibration units are the following: 35 = K 32 = °C 33 = °F 36 = mV 37 = Ohm 57 = Percent 250 = Not usedR/WUnsigned16244SENSOR_SNSerial number of the sensorR/WOctet(32)3245SENSOR_CAL_METHODThe last method used to calibration or user specified): to 33 = factory calibration or user specified): to 33 = factory calibration or user specified): to 35 = Factory calibration or user specif	27	RJ_VALUE		R/W	Float	4
Image: Constraint of the high calibration point.For the high calibration point.For the value of the Primary Value Measurement used R/WFloat441CAL_POINT_LOThe value of the Primary Value Measurement used for the low calibration point.R/WFloat442CAL_MIN_SPANThe minimum span that must be used between the calibration inputs. Valid calibration units are the following: 35 = K 32 = °C 33 = °F 34 = °R 36 = mV 37 = Ohm 57 = Percent 250 = Not usedR/WUnsigned16244SENSOR_SNSerial number of the sensorR/WOctet(32)3245SENSOR_CAL_METHODThe last method used to calibration or user specified): 103 = Factory trip standard, 104 = User trim standardR/WUnsigned81	28	SENSOR_CONNECTION	Valid values are: 0 = 2 wire sensor, 1 = 3 wire	R/W	Unsigned8	1
42CAL_MIN_SPANThe minimum span that must be used between the calibration high and low pointsRFloat443CAL_UNITThe units used for the calibration inputs. Valid calibration units are the following: 35 = K 32 = °C 33 = °F 36 = mV 37 = Ohm 77 = Ohm 77 = Ohm 77 = Percent 250 = Not usedRWWUnsigned16244SENSOR_SNSerial number of the sensorR/WOctet(32)3245SENSOR_CAL_METHODThe last method used to calibration or user specified): 103 = Factory trip standard, 104 = User trim standardR/WUnsigned81	40	CAL_POINT_HI		R/W	Float	4
43CAL_UNITThe units used for the calibration inputs. Valid calibration units are the following: 35 = K 32 = °C 33 = °F 34 = °R 36 = mV 37 = Ohm 57 = Percent 250 = Not usedR/WUnsigned16244SENSOR_SNSerial number of the sensorR/WOctet(32)3245SENSOR_CAL_METHODThe last method used to calibration or user specified): 103 = Factory trip standard, 104 = User trim standardR/WUnsigned81	41	CAL_POINT_LO		R/W	Float	4
calibration units are the following:35 = K32 = °C33 = °F34 = °R36 = mV37 = Ohm57 = Percent250 = Not used44SENSOR_SNSENSOR_CAL_METHODThe last method used to calibrate the device. (Example: Factory calibration or user specified): 103 = Factory trip standard, 104 = User trim standardR/WUnsigned81	42	CAL_MIN_SPAN		R	Float	4
34 = 'R 36 = mV 36 = mV 37 = Ohm 37 = Ohm 57 = Percent 250 = Not used 250 = Not used 44 SENSOR_SN Serial number of the sensor R/W Octet(32) 32 45 SENSOR_CAL_METHOD The last method used to calibrate the device. (Example: Factory calibration or user specified): 103 = Factory trip standard, 104 = User trim standard R/W Unsigned8 1	43	CAL_UNIT	calibration units are the following: 35 = K 32 = °C 33 = °F	R/M/	l Insigned 16	2
45 SENSOR_CAL_METHOD The last method used to calibrate the device. R/W Unsigned8 1 (Example: Factory calibration or user specified): 103 = Factory trip standard, 104 = User trim standard			36 = mV 37 = Ohm 57 = Percent	NW.	Unsigned to	2
(Example: Factory calibration or user specified): 103 = Factory trip standard, 104 = User trim standard	44	SENSOR_SN	Serial number of the sensor	R/W	Octet(32)	32
46 SENSOR_CAL_LOC The last location of the calibrated sensor R/W Octet(32) 32	45	SENSOR_CAL_METHOD	(Example: Factory calibration or user specified): 103 = Factory trip standard, 104 = User trim	R/W	Unsigned8	1
	46	SENSOR_CAL_LOC	The last location of the calibrated sensor	R/W	Octet(32)	32

Model 3244MV

Reference Manual

00809-0100-4799, Rev BA September 2002

PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
47	SENSOR_CAL_DATE	The last date on which the calibration was performed	R/W	Date	7
48	SENSOR_CAL_WHO	The name of the person responsible for the last sensor calibration	R/W	Octet(32)	32
49	SPECIAL_SENSOR_RO	Special sensor matching coefficients – Ro Value (Callendar-Van Dusen sensor matching)	R/W	Float	4
50	SPECIAL_SENSOR_A	Special sensor matching coefficients – A Value (Callendar-Van Dusen sensor matching)	R/W	Float	4
51	SPECIAL_SENSOR_B	Special sensor matching coefficients – B Value (Callendar-Van Dusen sensor matching)	R/W	Float	4
52	SPECIAL_SENSOR_C	Special sensor matching coefficients – C Value (Callendar-Van Dusen sensor matching)	R/W	Float	4
53	A2D_CONVERSION_INFO	Indicate whether the input power has 60 Hz or 50 Hz line cycle 0 = "60 Hz," Choose this if the input power has 60 Hz line cycle 1 = "50 Hz," Choose this if the input power has 50 Hz line cycle	R/W	Unsigned8	1
54	RJ_UNIT	Unit of the reference junction temperature	R/W	Unsigned16	2
55 56	MODULE_SN TB_COMMAND_STATUS	The A/D module serial number Transducer board command status 0 = no Command Active 1 = Command Executing 2 = Command Done	R	Octet(32) Unsigned8	32
		3 = Command Done: Errors			
57	A2D_BRD_SN	A/D board serial number	R	Unsigned32	4
58	A2D_BRD_HARDWARE_REV	A/D hardware revision	R	Unsigned8	1
59	A2D_BRD_SOFTWARE_NUM	A/D software revision number	R	Unsigned32	4
60	A2D_SOFTWARE_REV	Software revision	R	Octet(48)	48
61	CJC_CALIBRATION	The CJC calibration value	R/W	Float	4
62	RTD_OFFSET_COMPENSATION	RTD offset compensation 0 = "Disabled," Choose this if you want offset compensation disabled 1 = "Enabled," Choose this for normal operation and the best open sensor diagnostics.	R/W	Unsigned8	1
63	CALIBRATOR_MODE	Calibrator mode. Used to determine the mode of the calibration logic 0 = "Disabled," Choose this if you are doing an input trim to minimize interaction between the device and the calibration hardware. 1 = "Enabled," Choose this or normal operation and the best open sensor diagnostics	R/W	Unsigned8	1

Transducer 3 (Differential) Block (Slot 5)

PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
0.1	BLOCK_OBJECT.Reserved	Contains the characteristics of the blocks.	R	Unsigned8	1
0.2	BLOCK_OBJECT.Block Object	Contains the characteristics of the blocks.	R	Unsigned8	1
0.3	BLOCK_OBJECT.Parent Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.4	BLOCK_OBJECT.Class	Contains the characteristics of the blocks.	R	Unsigned8	1
0.5	BLOCK_OBJECT.DD Reference	Contains the characteristics of the blocks.	R	Unsigned32	4
0.6	BLOCK_OBJECT.DD Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.7	BLOCK_OBJECT.Profile	Contains the characteristics of the blocks.	R	Unsigned16	2
0.8	BLOCK_OBJECT.Profile Revision	Contains the characteristics of the blocks.	R	Unsigned16	2
0.9	BLOCK_OBJECT.Execution Time	Contains the characteristics of the blocks.	R	Unsigned8	1
0.10	BLOCK_OBJECT.Highest_Rel_Offset	Contains the characteristics of the blocks.	R	Unsigned16	2
0.11	BLOCK_OBJECT.Index View_1	Contains the characteristics of the blocks.	R	Unsigned16	2
0.12	BLOCK_OBJECT.Num. Of Views	Contains the characteristics of the blocks.	R	Unsigned8	1
1	ST_REV	A block has static block parameters that are not changed by the process. Values are assigned to this parameter during the configuration or optimization. The value of ST_REV must increase by 1 after every change of a static block parameter. This provides a check of the parameter revision.	R	Unsigned16	2
2	TAG_DESC	Every block can be assigned a textural TAG description. The TAG_DESC is the address of the block. The TAG_DESC must be unambiguous and unique in the Profibus system.	R/W	Octet(32)	32
3	STRATEGY	Grouping of Function Block. The STRATEGY field can be used to group blocks.	R/W	Unsigned16	2
4	ALERT_KEY	This parameter contains the identification number of the plant unit. It helps to identify the location (plant unit) of an event (crossing a limit).	R/W	Unsigned8	1
5	TARGET_MODE	The TARGET_MODE parameter contains desired mode normally set by a control application or an operator.	R/W	Unsigned8	1
6.2	MODE_BLK.actual	These blocks contain the actual normitted and			
6.3	MODE_BLK.permitted	These blocks contain the actual, permitted and normal modes of the block	R	DS-37	3
6.4	MODE_BLK.normal				
7	ALARM_SUM	This parameter contains the current states of the block alarms	R	DS-42	8
8	MEAS_VALUE	Main measuring value, function of sensors/asic, corrected by BIAS_ ¹ /2	R	DS-33	5
11	SENSOR_MEAS_TYPE	Mathematical function: Normal, average, differential form channel 1 and 2	R/W	Unsigned8	1
13	SENSOR_TYPE	Select the type of sensor (Code) for Thermocouples, Rrd., Pyrometers or linear	R/W	Unsigned8	1

Reference Manual

00809-0100-4799, Rev BA September 2002

Model 3244MV

PA Index Number	Parameter	Description	Access	Data Type/ Structure	Size – Bytes
20	TEMPERATURE_UNIT	Select the unit of the temperature. (Example: °C, °F, °K, %), Coding according HCF	R	Unsigned16	2
21	UPPER_SENSOR_LIMIT	Maximum sensor temperature: Physical upper limit function of sensor. (Example: PT 100 = 850 °C)	R	Float	4
22	LOWER_SENSOR_LIMIT	Minimum sensor temperature: Physical lower limit function of sensor. (Example: PT 100 = -200 °C)	R	Float	4
23	MEASURE_FILTER	Measuring filter parameter to suppress noise in process temperature.	R/W	Float	4
24	INPUT_FAULT	Used to indicate memory, ASIC, communication, or material failures.	R/W	Unsigned8	1
25	RJ_TEMP	Reference junction temperature	R	Float	4
54	RJ_UNit	Unit for the reference junction temperature	R/W	Unsigned16	2

PV STATUS BYTE CODES

Hex values are in parenthesis.

		Limit			
Quality	Quality Sub-Status	Not Limited	LO	н	Constant
BAD	Non-specific	0 (0)	1 (1)	2 (2)	3 (3)
BAD	Configuration error	4 (4)	5 (5)	6 (6)	7 (7)
BAD	Not connected	8 (8)	9 (9)	10 (a)	11 (b)
BAD	Device failure	12 (c)	13 (d)	14 (e)	15 (f)
BAD	Sensor failure	16 (10)	17 (11)	18 (12)	19 (13)
BAD	No comm, with LUV	20 (14)	21 (15)	22 (16)	23 (17)
BAD	No comm, no LUV	24 (18)	25 (19)	26 (1a)	27 (1b)
BAD	Out of Service	28 (1c)	29 (1d)	30 (1e)	31 (1f)
UNCERTAIN	Non-specific	64 (40)	65 (41)	66 (42)	67 (43)
UNCERTAIN	Last usable value	68 (44)	69 (45)	70 (46)	71 (47)
UNCERTAIN	Substitute/Manual entry	72 (48)	73 (49)	74 (4a)	75 (4b)
UNCERTAIN	Initial value	76 (4c)	77 (4d)	78 (4e)	79 (4f)
UNCERTAIN	Sensor conversion not accurate	80 (50)	81 (51)	82 (52)	83 (53)
UNCERTAIN	Engineering unit range violation	84 (54)	85 (55)	86 (56)	87 (57)
UNCERTAIN	Sub-normal	88 (58)	89 (59)	90 (5a)	91 (5b)
Good (NC)	Non-specific	128 (80)	129 (81)	130 (82)	131 (83)
Good (NC)	Active block alarm	132 (84)	133 (85)	134 (86)	135 (87)
Good (NC)	Active advisory alarm	136 (88)	137 (89)	138 (8a)	139 (8b)
Good (NC)	Active critical alarm	140 (8c)	141 (8d)	142 (8e)	143 (8f)
Good (NC)	Unack block alarm	144 (90)	145 (91)	146 (92)	147 (93)
Good (NC)	Unack advisory alarm	148 (94)	149 (95)	150 (96)	151 (97)
Good (NC)	Unack critical alarm	152 (98)	153 (99)	154 (9a)	155 (9b)
Good (C)	Non-specific	192 (c0)	193 (c1)	194 (c2)	195 (c3)
Good (C)	Initialization acknowledge	196 (c4)	197 (c5)	198 (c6)	199 (c7)
Good (C)	Initialization request	200 (c8)	201 (c9)	202 (ca)	203 (cb)
Good (C)	Not invited	204 (cc)	205 (cd)	206 (ce)	207 (cf)
Good (C)	Not selected	208 (d0)	209 (d1)	210 (d2)	211 (d3)
Good (C)	Do not select	212 (d4)	213 (d5)	214 (d6)	215 (d7)
Good (C)	Local override	216 (d8)	217 (d9)	218 (da)	219 (db)
Good (C)	Fail safe active	220 (dc)	221 (dd)	222 (de)	223 (df)
Good (C)	Initiate fail safe	224 (e0)	225 (e1)	226 (e2)	227 (e3)

PV status is an 8-bit enumeration with three separate incorporated into the signal byte value. For example:

Quality	Sub-status	Limit

Reference Manual

00809-0100-4799, Rev BA September 2002

Maintenance Section 4 Electronics Housingpage 4-3 SAFETY MESSAGES Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Please refer to the following safety messages before performing an operation preceded by this symbol. Warnings Failure to follow these installation guidelines could result in death or serious injury: · Make sure only gualified personnel perform the installation. Explosions could result in death or serious injury: Do not remove the transmitter cover in explosive atmospheres when the circuit is live. Verify that the operating atmosphere of the transmitter is consistent with the appropriate hazardous locations certifications. Both transmitter covers must be fully engaged to meet explosion-proof requirements. Electrical shock could cause death or serious injury. If the sensor is installed in a high-voltage environment and a fault condition or installation error occurs, high voltage may be present on transmitter leads and terminals.

Use extreme caution when making contact with the leads and terminals.

Process leaks could result in death or serious injury:

- Install and tighten thermowells or sensors before applying pressure, or process leakage may result.
- Do not remove the thermowell while in operation. Removing while in operation may cause process fluid leaks.

HARDWARE

Diagnostics

If a malfunction is suspected, despite the absence of diagnostic messages, follow the procedures described in Table 4-1 to verify that transmitter hardware and process connections are in good working order. Under each of four major symptoms, specific suggestions are offered for solving problems. Always address the most likely and easiest-to-check conditions first.

Table 4-1. Troubleshooting.

0		
Symptom	Potential Source	Corrective Action
Transmitter does not communicate with the Configuration	Loop Wiring	 Check for adequate voltage to the transmitter. The transmitter requires between 9.0 and 32.0 V at the terminals to operate and provide complete functionality
Interface		 Check for intermittent shorts, open circuits, and multiple grounds.
High Output	Sensor Input Failure or Connection	Enter the transmitter test mode to isolate a sensor failure.Check for a sensor open circuit.
		Verify the process variable is not out of range.
	Loop Wiring	 Check for dirty or defective terminals, interconnecting pins, or receptacles.
	Power Supply	 Check for adequate voltage to the transmitter. The transmitter requires between 9.0 and 32.0 V at the terminals to operate and provide complete functionality
	Electronics Module	 Enter the transmitter test mode to isolate a module failure.
		 Check the sensor limits to ensure calibration adjustments are within the sensor range.
Erratic Output	Loop Wiring	 Check for adequate voltage to the transmitter. The transmitter requires between 9.0 and 32.0 V at the terminals to operate and provide complete functionality
		 Check for intermittent shorts, open circuits, and multiple grounds.
	Electronics Module	Enter the transmitter test mode to isolate module failure.
Low Output or No Output	Sensor Element	Enter the transmitter test mode to isolate a sensor failure.
		Verify the process variable is not out of range.
	Loop Wiring	Check for adequate voltage to the transmitter. The transmitter requires between 9.0 and 32.0 V at the terminals to operate and provide complete functionality
		Check for shorts and multiple grounds.
		Check the loop impedance.
		 Check wire insulation to detect possible shorts to ground.
	Electronics Module	Check the sensor limits to ensure calibration adjustments are within the sensor range.
		Enter the transmitter test mode to isolate an electronics module failure.

Maintenance	The Model 3244MV transmitter has no moving parts and requires a minimum amount of scheduled maintenance. The transmitter features a modular design for easy maintenance. If a malfunction is suspected, check for an external cause before performing the diagnostics presented below.				
	Sensor Checkout				
	If the sensor is installed in a high-voltage environment and a fault condition or installation error occurs, the sensor leads and transmitter terminals could carry lethal voltages.				
	To determine whether the sensor is causing the malfunction, either replace it with another Rosemount sensor or connect a test sensor locally at the transmitter. This can be very useful, especially when checking the wiring for a remote mounted sensor. Please consult a Rosemount representative for more information.				
ELECTRONICS HOUSING					
Disassembly	The transmitter is designed with a dual-compartment housing; one compartment contains the Profibus-PA electronics module assembly and the other contains all sensor, power/communication, and internal ground lug terminals.				
	The transmitter's electronics module assembly is located in the compartment opposite the terminal block.				
	Removing the Profibus-PA Electronics Module Assembly				
	Use the following procedure to remove the Profibus-PA electronics module assembly:				
	NOTE Part of the electronics are sealed in a moisture-proof plastic enclosure referred to as the electronics module. The module is a non-repairable unit; if a malfunction occurs the entire unit must be replaced.				
	1. Disconnect the power to the transmitter.				
	 Remove the cover from the electronics side of the transmitter housing. Do not remove any covers in explosive atmospheres when the circuit is live. 				
	 Loosen the two screws that anchor the electronics module assembly to the transmitter housing. 				
	 Firmly grasp the screws and assembly and pull it straight out of the housing, taking care not to damage the interconnecting pins. 				
	NOTE Note the transmitter's security switch position (ON or OFF). If the electronics module is being replaced with a new one, ensure the security switch is set in				

Note the transmitter's security switch position (ON or OFF). If the electronics module is being replaced with a new one, ensure the security switch is set in the same position (see "Security" on page 2-10).

Assembly

Replacing the Profibus-PA Electronics Module Assembly

Use the following procedure to reassemble the Profibus-PA electronics module assembly.

- 1. Ensure that the transmitter security switch on the electronics module assembly is in the same position as the one that is being replaced.
- 2. Carefully insert the electronics module assembly to mate the interconnecting pins with the necessary receptacles on the electronics board attached to the housing.
- 3. Tighten the two mounting screws.
- Replace the cover. Tighten the cover ¹/₆ of a revolution after the cover begins to compress the o-ring. Both transmitter covers must be fully engaged to meet explosion-proof requirements.

Reference Manual

00809-0100-4799, Rev BA September 2002

Model 3244MV

Appendix A Specifications and Reference Data

Specifications	page A-1
Dimensional Drawings	page A-6
Ordering Information	page A-8
Tagging	page A-9
Options	page A-10

SPECIFICATIONS

Functional

Inputs

User-selectable. See "Accuracy" on page A-3 (Sensor terminals are rated to 42.4 V dc.)

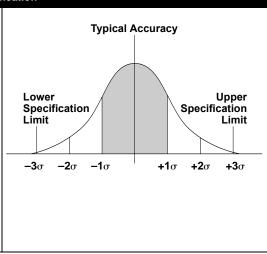
Outputs

Manchester-encoded digital signal that conforms to IEC 1158-2 and ISA 50.02

Isolation

Input/output isolation tested to 500 V rms (707 V dc)

Power Supply


External power supply is required. Transmitter operation is between 9.0 and 32.0 V dc, 17.5 mA maximum. (Transmitter power terminals are rated to 42.4 V dc.)

Rosemount Conformance to Specification

You can be confident that a Rosemount product not only meets our published specifications, but most likely exceeds them. Our advanced manufacturing techniques and use of Statistical Process Control provide specification conformance to at least $\pm 3\sigma^{(1)}$. In addition, our commitment to continual improvement ensures that product design, reliability, and performance get better every year.

For example, the Reference Accuracy distribution for the Model 3244MV MultiVariable Temperature Transmitter with Profibus-PA is shown to the right. Our Specification Limits are \pm 0.10 °C, but, as the shaded area shows, approximately 68% of the units perform three times better than the limits. Therefore, it is very likely that you will receive a device that performs much better than our published specifications.

Conversely, a vendor who "grades" product without using Process Control, or who is not committed to $\pm 3\sigma$ performance, will ship a much higher percentage of units that are barely within (or even outside of) advertised specification limits.

www.rosemount.com

(1) Sigma (σ) is the Standard Deviation of a statistical distribution, and describes the dispersion (spread) of the distribution.

Profibus-PA

Table A-1. Block Information

Block	Execution Time (milliseconds)	Slot Number
Physical (PB)	_	2
Transducer (TB)	—	3, 4, 5,
Transducer (TB)	_	3, 4, 5,
Transducer (TB)	_	3, 4, 5,
Analog Input 1 (AI1)	50	6
Analog Input 2 (Al2)	50	7
Analog Input 3 (AI3)	50	8

Temperature Limits

Ambient

• -40 to 185 °F (-40 to 85 °C).

Storage

• -60 to 250 °F (-50 to 120 °C).

Transient Protection Option (available at a later date)

The transient protector helps to prevent damage to the transmitter from transients induced on the loop wiring by lightning, welding, heavy electrical equipment, or switch gears. The transient protection electronics are contained in an add-on assembly that attaches to the standard transmitter terminal block. The transient protector is tested per the following standard: ANSI/IEEE C62.41-1991 (IEEE 587), Location Categories A2, B3. 1kV peak (10 × 1000 μ S Wave) 6kV / 3kA peak (1.2 × 50 μ S Wave 8 × 20 μ S Combination Wave) 6kV / 0.5kA peak (100 kHz Ring Wave)

4kV peak EFT (5 \times 50 nS Electrical Fast Transient)

Nominal clamping voltages:

- 77 V (normal mode)
- 90 V (common mode)

Alarms

The AI block allows the user to configure the alarm to HI-HI, HI, LO, or LO-LO, with a variety of priority levels and hysteresis

Status

If self-diagnostics detect a sensor burnout or a transmitter failure, the status of the measurement will be updated accordingly.

Humidity Limits

0-100% relative humidity.

Turn-on Time

Performance within specifications is achieved less than 10.0 seconds after power is applied to the transmitter.

Update Time

Approximately 0.5 seconds for a single sensor (1.0 second for two sensors).

Performance

The Model 3244MV with Profibus-PA maintains a specification conformance of at least 3\sigma.

Accuracy

Sensor Options	Input Ranges		Accuracy ⁽¹⁾	
2-, 3-, 4-Wire RTDs	°C	°F	°C	°F
Pt 100 (α = 0.00385) ⁽²⁾	200 to 850	-328 to 1562	± 0.10	± 0.18
Pt 100 (α = 0.003916) ⁽³⁾	200 to 645	-328 to 1193	± 0.10	0.18±
Pt 200 ⁽²⁾	200 to 850	-328 to 1562	± 0.22	± 0.40
Pt 500 ⁽²⁾	200 to 850	-328 to 1562	0.14	± 0.25
Pt 1000 ⁽²⁾	200 to 300	-328 to 572	± 0.08	± 0.14
Ni 120 ⁽⁴⁾	200 to 300	-94 to 572	± 0.08	± 0.14
Cu 10 ⁽⁵⁾	200 to 250	-58 to 482	± 1.00	± 1.80
Thermocouples	°C	°F	°C	°F
NIST Type B ^{(6) (7) (8)}	212 to 3308	100 to 1820	± 0.75	± 1.35
NIST Type E ^{(5) (8)}	-58 to 1832	-50 to 1000	± 0.20	± 0.36
NIST Type J ^{(6) (8)}	-292 to 1400	-180 to 760	± 0.25	± 0.45
NIST Type K ^{(6) (8)}	-292 to 2502	-180 to 1372	± 0.50	± 0.90
NIST Type N ^{(6) (8)}	32 to 2372	0 to 1300	± 0.40	± 0.72
NIST Type R ^{(6) (8)}	32 to 3214	0 to 1768	± 0.60	± 1.08
NIST Type S ^{(6) (8)}	32 to 3214	0 to 1768	± 0.50	± 0.90
NIST Type T ^{(6) (8)}	-328 to 752	-200 to 400	± 0.25	± 0.45
Millivolt Input ⁽⁹⁾	-10 to 100 mV		± 0.015 mV	
2-, 3-, 4-Wire Ohm Input	0 to 2000 ohms		±0.35 ohm	

(1) The transmitter's accuracy is valid for the entire input range of the sensor.

(2) IEC 751; α = 0.00385, 1995.

(3) JIS 1604, 1981.
(4) Edison Curve No. 7.

(5) Edison Copper Winding No. 15.(6) NIST Monograph 175.

(a) This Findingraph 173.
(7) Accuracy for NIST Type B T/C is ±3.0 °C (5.4 °F) from 100 to 300 °C (212 to 572°F).
(8) Total accuracy for thermocouple only: sum of accuracy +0.25 °C (cold junction accuracy).
(9) Millivolt inputs are not approved for use with CSA option code I6.

Stability

±0.1% of reading or 0.1 °C, whichever is greater, for 24 months for RTDs. ±0.1% of reading or 0.1 °C, whichever is greater, for 12 months for thermocouples.

Sensor Lead Wire Resistance Effect

RTD Input

When using a 4-wire RTD, the effect of lead resistance is eliminated and has no impact on accuracy. However, a 3-wire sensor will not fully cancel lead resistance error because it cannot compensate for imbalances in resistance between the lead wires. A 2-wire sensor will produce the largest error because it directly adds the lead wire resistance to the sensor resistance. For 2- and 3-wire RTDs, an additional lead wire resistance error is induced with ambient temperature variations. Table A-2 and the examples shown below help quantify these errors.

Table A-2. RTD Sensor Input Approximate Basic Error

Sensor Input Approximate Basic Error

4-wire RTD None (independent of lead wire resistance)

3-wire RTD \pm 1.0 Ω in reading per ohm of unbalanced lead wire resistance⁽¹⁾

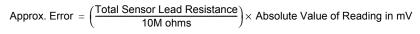
2-wire RTD 1.0 Ω in reading per ohm of lead wire resistance

(1) Unbalanced lead wire resistance = maximum imbalance between any two leads.

Examples of Approximate Basic Error Calculation:

Given:

- Total cable length = 150 m
- Unbalance of the lead wires @ 20 °C = 0.5 Ω
- Resistance/length (18 AWG Cu) = $0.025 \Omega/m$
- Temperature Coefficient (Cu) = $0.0039 \Omega \Omega' \Omega' ^{\circ}C$
- Approximate Pt 100 resistance variation with temperature = 0.39 Ω/ °C


Pt 100 3-wire RTD:

- Lead wire resistance seen by the transmitter = 0.5 Ω
- Basic error = 0.5 Ω/(0.39 Ω/ °C) = 1.3 °C
- Error due to an ambient temperature variation of ± 25 °C = ± 0.13 °C
- Pt 100 2-wire RTD:
 - Lead wire resistance seen by the transmitter = 150 m \times 2 wires \times 0.025 Ω/m = 7.5 Ω
 - Basic error = 7.5 Ω/(0.39 Ω/°C) = 19.2 °C
 - Error due to an ambient temperature variation of ± 25 °C = ± 1.9 °C

Thermocouple and Millivolt Input

• dc input impedance > 10M ohms.

Example of Approximate Error Calculation:

RFI Effect

Worst case RFI Effect is equivalent to the transmitter's nominal accuracy specification per "Accuracy" on page A-3 when tested in accordance with EN 61000-4-3, 10 V/m, 80 to 1000 MHz, and 30 V/m, 26-500 MHz (Increased NAMUR), with twisted shielded cables (Type A Profibus type).

Vibration Effect

Transmitters tested to the following specifications with no effect on performance:

<u>FrequencyAcceleration</u> 10–60 Hz0.21 mm peak displacement 60–2000 Hz3 g's

Self Calibration

The transmitter's analog-to-digital circuitry automatically self-calibrates for each temperature update by comparing the dynamic measurement to extremely stable and accurate internal reference elements.

Ambient Temperature Effect

Transmitters may be installed in locations where the ambient temperature is between -40 and 85 °C. Each transmitter is individually characterized over this ambient temperature range at the factory in order to maintain excellent accuracy performance in dynamic industrial environments. This special manufacturing technique is accomplished through extreme hot and cold temperature profiling with individual adjustment factors programmed into each transmitter. Transmitters automatically adjust for component drift caused by changing environmental conditions.

Sensor Options	Accuracy per 1.0 °C (1.8 °F) Change in Ambient ⁽¹⁾
2-, 3-, 4-Wire RTDs	
Pt 100 (α = 0.00385)	0.0015 °C
Pt 100 (α = 0.003916)	0.0015 °C
Pt 500	0.0023 °C
Pt 200	0.0015 °C
Pt 1000	0.0015°C
Ni 120	0.0010 °C
Cu 10	0.015 °C
Thermocouples	
NIST Type B	0.014 °C if reading ≥ 1000 °C
	0.029 °C – 0.0021% of (reading–300) if 300 °C ≤reading < 1000 °C
	0.046 °C – 0.0086% of (reading–100) if 100 °C ≤reading < 300 °C
NIST Type E	0.004 °C + 0.00043% of reading
NIST Type J	0.004 °C + 0.00029% of reading if reading \ge 0 °C
	0.004 °C + 0.0020% of abs. val. reading if reading < 0 °C
NIST Type K	0.005 °C + 0.00054% of reading if reading \ge 0 °C
	0.005 °C + 0.0020% of abs. val. reading if reading < 0 °C
NIST Type N	0.005 °C + 0.00036% of reading
NIST Type R	0.015 °C if reading \geq 200 °C
	0.021 °C – 0.0032% of reading if reading < 200 °C
NIST Type S	0.015 °C if reading \geq 200 °C
	0.021 °C – 0.0032% of reading if reading < 200 °C
NIST Type T	0.005 °C if reading \geq 0 °C
	0.005 °C + 0.0036% of abs. val. reading if reading < 0 °C
Millivolt Input	0.00025 mV
2-, 3-, 4-Wire Ohm Input	0.007 Ω

(1) Change in ambient is in reference to the calibration temperature of the transmitter (20 °C (68 °F) typical from factory).

Temperature Effects Example

When using a PT 100 (α = 0.00385) sensor input with a 30 °C ambient temperature, the:

- Temp Effects would be: 0.0015 °C x {3930 20}} = 0.015 °C.
- Worst Case Error: Sensor Accuracy + Temperature Effects = 0.10 °C + 0.015 °C = 0.115 °C
- Total Probably Error

$$= (\sqrt{0.10^2 + 0.015^2} = 0.101^{\circ} \text{ C})$$

Physical

Conduit Connections

¹/₂–14 NPT, PG13.5 (PG11), M20 3 1.5 (CM20), or JIS G ¹/₂ conduit.

Materials of Construction

Electronics housing

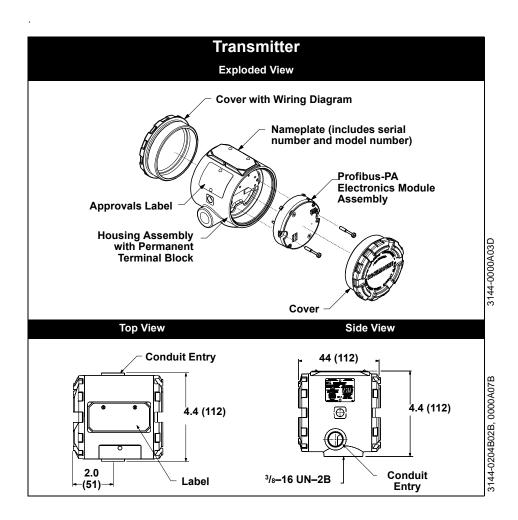
• Low-copper aluminum or CF-8M (cast version of 316 Stainless Steel). Paint

• Polyurethane.

Cover o-rings

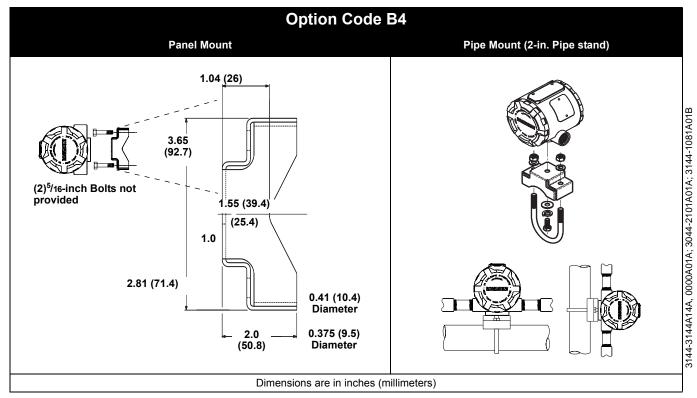
• Buna-N.

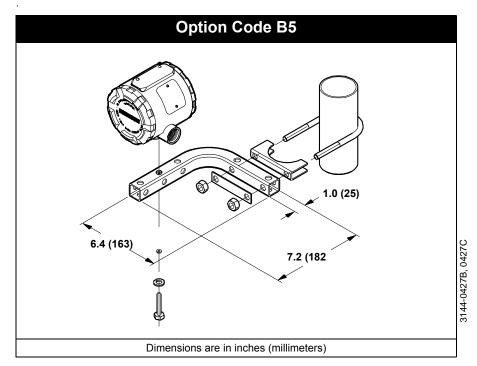
Mounting


Transmitters may be attached directly to the sensor. Optional mounting brackets permit remote Mounting (see Figure 2-5 and Figure 2-6 on page 2-7).

Weight

Aluminum:2.5 lb (1.1 kg). Stainless Steel:7.2 lb (3.3 kg). Add 1.0 lb (0.5 kg) for bracket options.

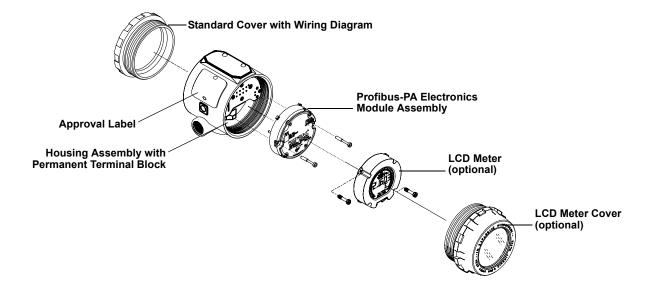

Enclosure Ratings


NEMA 4X and CSA Enclosure Type 4X, IP66, IP68.

DIMENSIONAL DRAWINGS

Mounting Brackets

ORDERING INFORMATION


Transmitter

Model	Product Description	
3244MVW	Temperature Transmitter with Dual Sensor In	put and Profibus-PA Digital Signal
Code	Housing	Conduit Thread
1	Aluminum	1⁄2–14 NPT
2	Aluminum	M20 $ imes$ 1.5 (CM20)
3	Aluminum	PG 13.5 (PG 11)
4	Aluminum	JIS G ¹ / ₂
5	SST	1⁄2–14 NPT
6	SST	M20 $ imes$ 1.5 (CM20)
7	SST	PG 13.5 (PG 11)
8	SST	JIS G 1/2
Code	Hazardous Locations Certifications ⁽¹⁾	
NA	No Approval Required	
E5	FM Explosion-Proof and Non-Incendive Appro	oval
E6	CSA Explosion-Proof and Non-Incendive App	roval
E9	ISSeP/CENELEC Flame-Proof Approval	
N1	BASEEFA/CENELEC Type n Approval	
11	BASEEFA/CENELEC Intrinsic Safety Approva	al
16	CSA Intrinsic Safety and Non-Incendive Field	Circuit Approval
C6	CSA Explosion-Proof and Intrinsic Safety App	roval
Code	Options	
Code	Options Accessory	
Code B4	Accessory Universal Mounting Bracket for 2-inch Pipe M	ounting and Panel Mounting—SST Bracket and Bolts
	Accessory	6 6
B4 B5 M5	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter	6 6
B4 B5 M5 G1	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly	0 0
B4 B5 M5	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector	0 0
B4 B5 M5 G1 T1	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration	0 0
B4 B5 M5 G1 T1 U4	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors	0 0
B4 B5 M5 G1 T1 U4 U5	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature	e Mounting—SST Bracket and Bolts
B4 B5 M5 G1 T1 U4 U5 C1	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and	e Mounting—SST Bracket and Bolts
B4 B5 M5 G1 T1 U4 U5 C1 C2	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule
B4 B5 M5 G1 T1 U4 U5 C1 C2 C4	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to get	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule
B4 B5 M5 G1 T1 U4 U5 C1 C2	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to get 50 Hz Line Voltage Filter	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule
B4 B5 M5 G1 T1 U4 U5 C1 C2 C4 F5	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to ge 50 Hz Line Voltage Filter Assembly	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule nerate a Calibration Certificate)
B4 B5 M5 G1 T1 U4 U5 C1 C2 C4 F5 X1 ⁽²⁾	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to get 50 Hz Line Voltage Filter Assembly Assemble Transmitter to a Sensor Assembly	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule nerate a Calibration Certificate) (hand tight, <i>Teflon[®]</i> (PTFE) tape where appropriate, fully wired)
B4 B5 M5 G1 T1 U4 U5 C1 C2 C4 F5 X1 ⁽²⁾ X2	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to get 50 Hz Line Voltage Filter Assembly Assemble Transmitter to a Sensor Assembly	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule nerate a Calibration Certificate) (hand tight, <i>Teflon</i> [®] (PTFE) tape where appropriate, fully wired) (hand tight, no <i>Teflon</i> (PTFE) tape, unwired)
B4 B5 M5 G1 T1 U4 U5 C1 C2 C4 F5 X1 ⁽²⁾	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to get 50 Hz Line Voltage Filter Assemble Assemble Transmitter to a Sensor Assembly Assemble Transmitter to a Sensor Assembly	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule nerate a Calibration Certificate) (hand tight, <i>Teflon[®]</i> (PTFE) tape where appropriate, fully wired)
B4 B5 M5 G1 T1 U4 U5 C1 C2 C4 F5 X1 ⁽²⁾ X2 X3 ⁽²⁾	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to get 50 Hz Line Voltage Filter Assemble Transmitter to a Sensor Assembly Assemble Transmitter to a Sensor Assembly Assemble Transmitter to a Sensor Assembly	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule nerate a Calibration Certificate) (hand tight, <i>Teflon</i> [®] (PTFE) tape where appropriate, fully wired) (hand tight, no <i>Teflon</i> (PTFE) tape, unwired) (wrench tight, <i>Teflon</i> (PTFE) tape where appropriate, fully wired)
B4 B5 M5 G1 T1 U4 U5 C1 C2 C4 F5 X1 ⁽²⁾ X2 X3 ⁽²⁾ Q4	Accessory Universal Mounting Bracket for 2-inch Pipe M Universal "L" Mounting Bracket for 2-inch Pipe LCD Meter External Ground Lug Assembly Transient Protector Custom Configuration Two Independent Sensors Differential Temperature Factory Configuration of Date, Descriptor, and Transmitter-Sensor Matching - Trim to Specifi 5-Point Calibration (use option code Q4 to get 50 Hz Line Voltage Filter Assemble Transmitter to a Sensor Assembly Assemble Transmitter to a Sensor Assembly Assemble Transmitter to a Sensor Assembly	e Mounting—SST Bracket and Bolts d Message Fields–CDS required c Rosemount RTD Calibration Schedule nerate a Calibration Certificate) (hand tight, <i>Teflon</i> [®] (PTFE) tape where appropriate, fully wired) (hand tight, no <i>Teflon</i> (PTFE) tape, unwired) (wrench tight, <i>Teflon</i> (PTFE) tape where appropriate, fully wired) C4 with Q4 option for a 5-Point Calibration Certificate)

Additional approvals available or pending. Contact Rosemount Customer Central for more information.
 Option codes X1 and X3 are no available with CSA approvals

Spare Parts List

•	
Part Description	Part Number
Profibus-PA foundation electronics module assembly	03144-4230-0001
LCD Meter (includes meter display, captive mounting hardware, and 10-pin inter-connection header)	03144-3020-1002
Meter Cover Kit (includes O-ring) Aluminum Meter Cover Kit Stainless Steel Meter Cover Kit	03144-1043-0001 03144-1043-0011
LCD Meter with Meter Cover Kit (includes meter display, captive mounting hardware, 10-pin inter-connection, header, and cover kit) LCD Meter with Meter Cover Kit – Aluminum LCD Meter with Meter Cover Kit – Stainless Steel	03144-3020-1001 03144-1043-1011
Mounting Bracket Kit B4 Mounting Bracket Kit B5 Mounting Bracket Kit	03044-2131-0001 03044-1080-0011
Housing Cover (includes O-ring and wiring diagram label) Aluminum Standard Cover Stainless Steel Standard Cover O-ring for cover (package of 12)	03144-4223-0001 03144-4223-0011 01151-0033-0003
Housing Kit (does not include covers) Aluminum Housing Kit Aluminum Housing Kit with External Ground Lug Assembly Stainless Steel Housing Kit Stainless Steel Housing Kit with external Ground Lug Assembly	03144-4224-0001 03144-4224-0002 03144-4224-0011 03144-4224-0012
Screw/Washer Combination for Sensor/Power Terminals (package of 12)	03144-1044-0001
External Ground Lug Assembly (package of 12)	03144-1047-0001

TAGGING

Hardware Tag

- no charge
- tagged in accordance with customer requirements
- stainless steel construction
- permanently attached to transmitter
- character height is ¹/₁₆-in. (1.6 mm)

OPTIONS

Software Tag

- no charge
- transmitter can store up to 30 characters. If no such characters are specified, the first 30 characters of the hardware tag are used as the default.

Custom Transmitter Configuration (Option Code C1)

Option code C1 allows you to specify the following data in addition to the standard configuration parameters.

- Date: day, month, year
- · Descriptor: 16 alphanumeric characters
- Message: 32 alphanumeric characters

Trim to Specific Rosemount RTD Calibration Schedule (Transmitter-to-Sensor Matching) (option code C2)

Option code C2 allows you to order the transmitter trimmed to a specific calibration schedule. This option requires that you order a Rosemount Series 65, 68, or 78 RTD sensor with a special calibration schedule. For information on ordering sensors calibrated to specific calibration schedules, refer to the Rosemount Sensors Product Data Sheets, publication number 00813-0100-2654 (Volume 1) or publication number 00813-0101-2654 (Volume 2).

Five Point Calibration (option code C4)

Option code C4 specifies that the transmitter be calibrated and verified at five-points: 0, 25, 50, 75, and 100% digital output points.

Trim to Special non-Standard Sensor (option code C7)

You may order the transmitter with option code C7 when connecting non-standard sensors, adding a special sensor, or expanding input ranges on a standard sensor. Refer to Table 7-1 on page 7-1 for a list of standard sensor types.

A characterization schedule for any RTD can be entered using Callandar-Van Dusen constants with a Profibus configuration tool. The constants can be entered on site or at the factory. For information on ordering sensors matched to the transmitter using Callandar-Van Dusen constants, refer to the Rosemount Sensors Product Data Sheet 00813-0100-2654 (Volume 1) or 00813-0101-2654 (Volume 2).

When a non-standard sensor is used as the input to the transmitter, the resistance versus temperature curve for a non-standard RTD, or the millivolt versus temperature curve for a non-standard thermocouple, is stored in the transmitter memory. This process is performed at the factory. The transmitter must be configured for a "special" sensor calibration to access the special curve, but you may use any standard input when the transmitter is configured for a "standard" sensor.

Mounting Brackets (option codes B4 and B5)

The transmitter can be mounted directly to the sensor, or in a remote location with one of two stainless steel mounting brackets. Refer to Figures 2-5 and 2-6 on page 2-7. The brackets facilitate mounting to a panel or a 2-inch pipe, and include stainless steel bolts. When installing the transmitter with a bracket, torque the bolts to 125 in-lb (14 n-m).

External Ground Lug Assembly (option code G1)

The external ground-lug assembly provides an auxiliary grounding point for the transmitter housing. The lug attaches to either side of the housing. See Figure A-1.

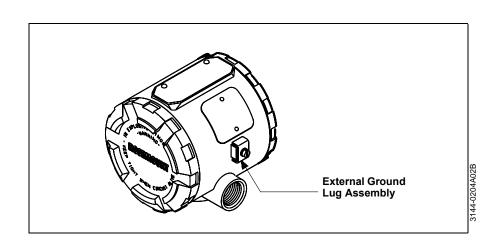


Figure A-1. External Ground-Lug Assembly Installed on a Model 3244MV Transmitter.

Reference Manual

00809-0100-4799, Rev BA September 2002

Model 3244MV

Appendix B

HAZARDOUS

CERTIFICATIONS

LOCATIONS

Approvals

 Hazardous Locations Certifications
 page B-1

 Installation Drawings
 page B-3

Institut Scientifique de Service Public (ISSeP)/CENELEC Flame-proof Approval

E9 EEx d IIC T6 (T_{amb} = -20 to 60 °C). Certificate: 95D.103.1211

Certificate implies Flame-Proof approval of the following:

- 1. Transmitter with Rosemount "E9" sensor installed per drawing 003144-0224
- 2. Transmitter with remote mounted Flame-Proof sensor and connection head assembly installed per drawing 3144-0224.

British Approvals Service for Electrical Equipment in Flammable Atmospheres (BASEEFA) Approvals

 N1 Type n Approval, EEx nL IIC T5 (T_{amb} = -40 to 70 °C) Certificate: ExBAS98ATEX3358X ATEX Marking: Ex II 3 G Maximum Input Voltage: 55 Vdc

Special Conditions for Safe Use (x):

The transmitter is not capable of withstanding the 500V insulation test required by EN50021:1998. This must be taken into account when installing the apparatus.

 CENELEC Intrinsic Safety, EEx ia IIC T4 (T_{amb} = -60 to 60 °C) Certificate: ExBAS98ATEX1357X ATEX Marking: Ex II 1 G

> Input Entity Parameters: <u>Power/Loop</u> $U_{max:in} = 30 \text{ V dc}$ $I_{max:in} = 300 \text{ mA}$ $P_{max:in} = 1.3 \text{ W}$ $C_i = 0.005 \mu\text{F}$ $L_i = 20 \mu\text{H}$

Special Conditions for Safe Use (x):

The apparatus is not capable of withstanding the 500V insulation test required by Clause 6.4.12 of EN 50020: 1994. This must be taken into account when installing the apparatus.

Factory Mutual

Esplosion-Proof for Class I, Division 1, Groups A, B, C, and D. Dust-Ignition-Proof for Class II, Division 1, Groups E, F, and G. Dust-Ignition-Proof for Class III, Division 1 hazardous locations. Non-Incendive for Class I, Division 2, Groups A, B, C, and D (T₄A). Indoor and outdoor use. Ambient Temperature Limit: –50 to 85 °C. Explosion-Proof approval only when installed per Rosemount drawing 03144-0220. For Group A, seal all conduits within 18-inches of enclosures; otherwise, conduit seal not required for compliance with NEC 501-5a(1).

Canadian Standards Association (CSA) Approvals

- E6 Explosion-Proof for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1 hazardous locations. Suitable for Class I, Division 2, Groups A, B, C, and D. Conduit seal not required. Ambient Temperature Limit: –50 to 85 °C.
- I6 Intrinsically Safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, G; Class III, Division 1 hazardous locations when installed per Rosemount drawing 03144-0222. Ambient Temperature Limit: 60 to 60 °C.
- **C6** Combination of E6 and I6.

September 2002

INSTALLATION DRAWINGS Rosemount Drawing 03144-0220 Rev D, 1 Sheet: Factory Mutual Explosion-proof Installation Drawing. Rosemount Drawing 03144-0221 Rev AE, 4 Sheets: Factory Mutual Intrinsic Safety and Nonincendive Field Circuit Configuration Installation Drawing. Rosemount Drawing 03144-0222 Rev AB, 2 Sheets: CSA Intrinsic Safety Approval Configuration Installation Drawing. Rosemount Drawing 03144-0224 Rev C, 1 Sheet: ISSEP/CENELEC Flame-proof Temperature Measurement Assembly Installation Drawing. IMPORTANT

Once a device labeled with multiple approval types is installed, it should not be reinstalled using any of the other labeled approval types. To ensure this, the approval label should be permanently marked to distinguish the used from the unused approval type(s).

Figure B-1. SAA Flame-Proof Installation Drawing 03144-0220, Rev D. Page 1 of 1

3244_03144-0220

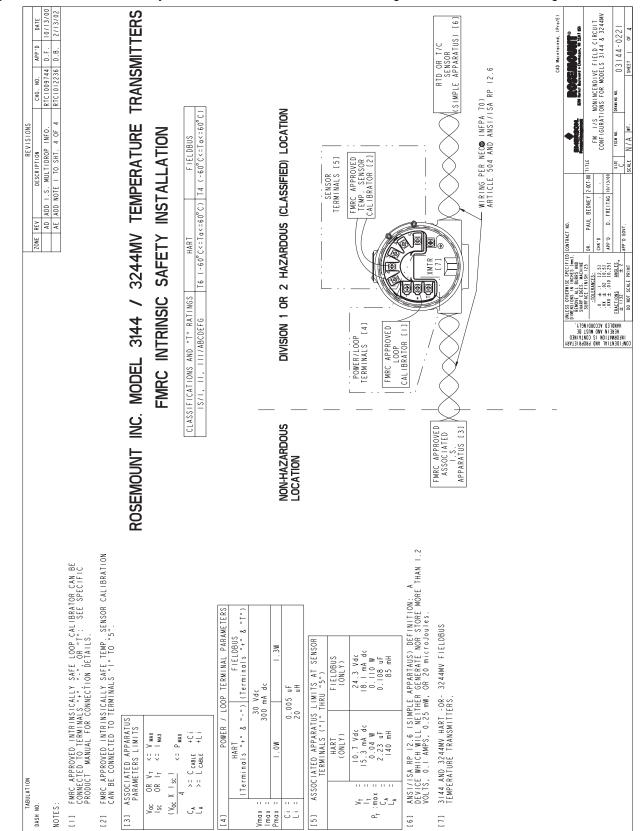
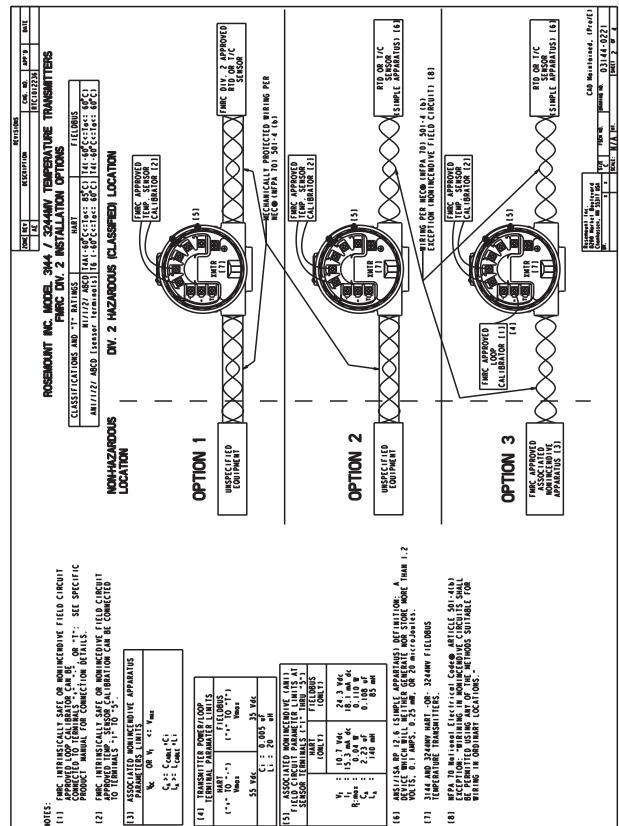
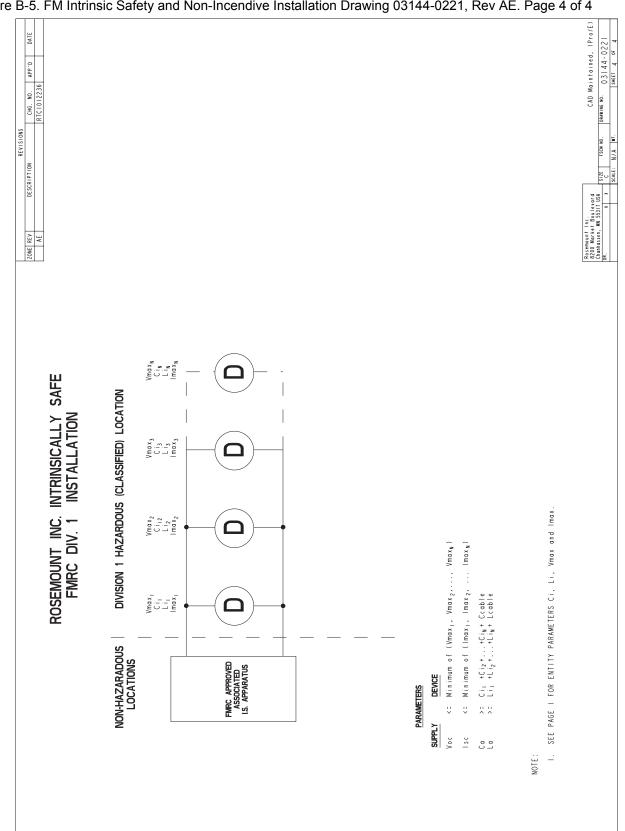



Figure B-2. FM Intrinsic Safety and Non-Incendive Installation Drawing 03144-0221, Rev AE. Page 1 of 4

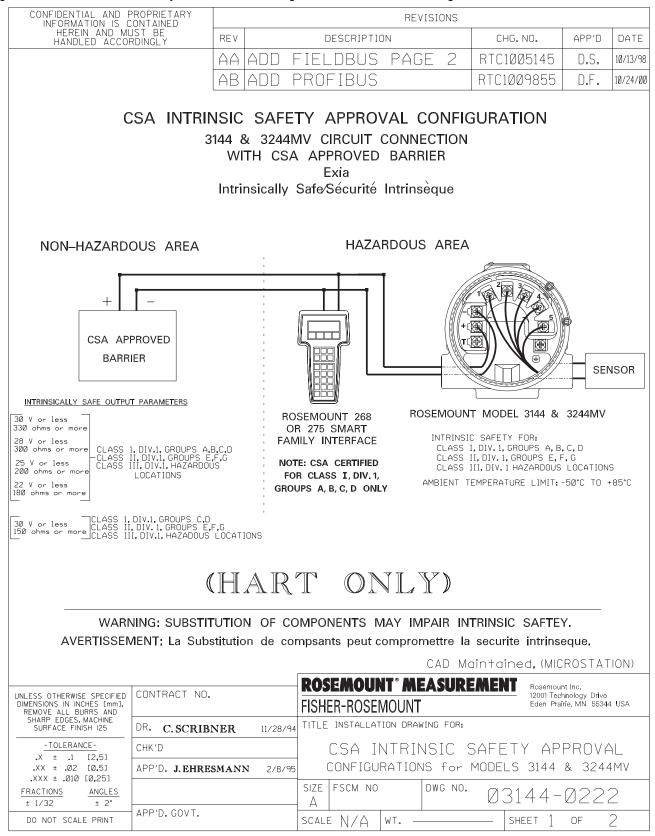
3244_03144-0221-1

Model 3244MV



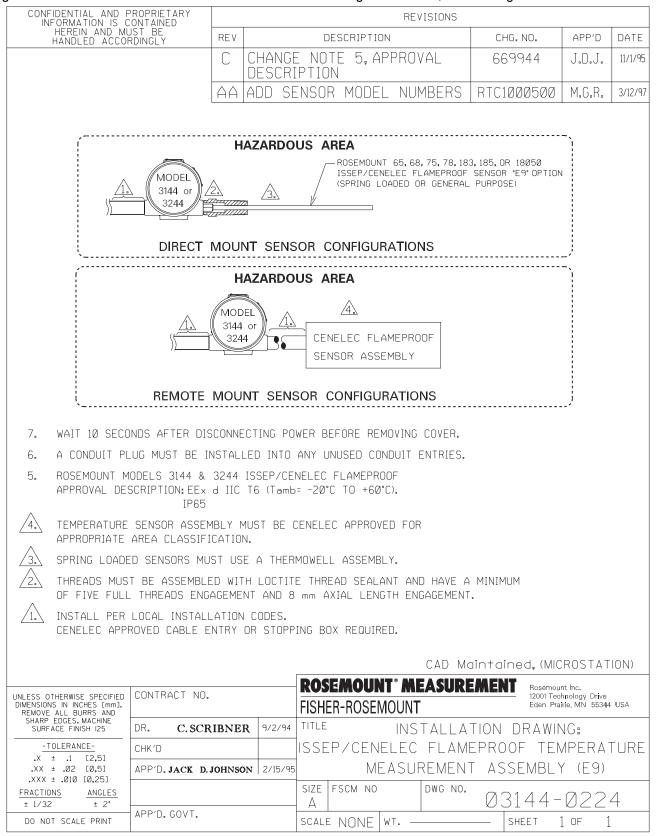
Elaura D 4 EM latainaia Osfati	/ and Non-Incendive Installation	Dual da a 00444 0004	
EIGUIDE B-4 EIM INTRINSIC SATED	/ and Mon-Incendive Installation	Drawing (13144-0771	
I Igulo D 1.1 M Internolo Gulot		Brawing COTTI CEET	

Model 3244MV



Reference Manual 00809-0100-4799, Rev BA

September 2002


Figure B-6. CSA Intrinsic Safety Installation Drawing 03144-0222, Rev AB. Page 1 of 2

3244_03144-0222-1

	SA Intrinsic	Salety Insta	liation Draw	ing 031	44-0222,	Rev A	B. Page 2	2 OT 2		
						RE	VISIONS			
			REV		DESCRIPTI	ON		CHG. NO.	APP'D	DAT
			AB					RTC1009855	5	
	CS	SA INTRI	NSIC SAF	ETY	APPRO	VAL	CONFIG			
		3244MV	(FIELDBUS	S/PROF	BUS) CI	RCUIT	CONNE	CTION		
			WITH CS	SA AP	PROVED					
			Intrinsicall		Exia Sécurité	Intrin	sèque			
NON-	HAZABDO	US AREA	:		HAZA	RDOU	S AREA			
		OO ANLA	1				0 / 11 12 / 1			
	+ CSA APPI BARRIE						-(<u>-</u> +(<u>-</u> T(<u>-</u>			
			1 1 1		L			ZUN	SE	NSOR
INTRINSICALLY	SAFE OUTPUT	PARAMETERS	1 1 1							
			· · · · ·		I	ROSEMO	DUNT MOD	el 3244MV (Fie	LDBUS/PRO	DFIBU
28 V or less 235 ohms or mo 25 V or less 160 ohms or mor 22 V or less 100 ohms or mor	re CLASS 1, -CLASS II CLASS II L	DIV.1, GROUPS A , DIV.1, GROUPS E I, DIV.1, HAZADOU OCATIONS	F,G				CLASS I CLASS I CLASS I	SAFETY FOR: ,DIV.1,GROUPS A, I,DIV.1,GROUPS E II,DIV.1 HAZARDOU MPERATURE LIMI	,F,G JS LOCATION	
	(FI	eldi	BUS/	PR	OF	IBU	JS (ONLY	~)	
								RINSIC SAFTE securite intrins		
~~L										
					FSCM NO		CAD Ma dwg no.	intained, (M		
		12001 Technol	ogy Drive		FSCM NO		1	intained, (M Ø3144		

Figure B-8. ISSEP/CENELEC Flame-Proof Installation Drawing 03144-0224, Rev C. Page 1 of 1

3244 03144-0224-1

Reference Manual

00809-0100-4799, Rev BA September 2002

Index

B Blo

loc	ks							
	AI					3-	-3,	3-4
	Parameter							3-4
	Physical					3-	-3,	3-6
	Transducer							3-3
	Transducer 1							3-7
	Transducer 2	2						3-7
	Transducer 3	3					. 3	3-10

С

0
Calibration
2-point trim
Configuration
Al Block
Physical Block 3-3
Transducer Block
Considerations
Electrical
Power Filter
Power Supply 2-2
Environmental
Moist or Corrosive 2-4
Temperature 2-3
General
Mechanical
Access Requirements 2-2
Mounting
Tagging

D Dra

rawings
DimensionalA-6
InstallationB-3
Switch Location 2-10
Wiring

Е

Electronics Housing	. 4-3
Removing the Electronics	. 4-3
Replacing the Electronics	. 4-4

G

Grounding .								2-8
Housing								
Shielded	W	ire						2-8

н

Hardware 4-2
Diagnostics 4-2
Maintenance 4-3
Sensor Checkout 4-3
Hazardous Certifications B-1
Hazardous Locations Certifications
Installation Drawings B-3

I

М

Mounting 2	2-4
European 2	2-6
North American	2-5

0

Options A-10
Ordering Information A-8
Spare Parts A-9
Transmitter A-8

Ρ

S

Security Switch													2-10	
-----------------	--	--	--	--	--	--	--	--	--	--	--	--	------	--

Sensor Connections
Millivolt
Ohm2-9
RTD2-9
Thermocouple
Set the Switches
Security
Simulate
Simulate Switch
Specifications A-1
Functional A-1
Performance A-3
Physical A-5
Profibus-PA A-2
Surges/Transients

Т

Tagging							. A-9
Hardware							. A-9
Software							A-10

W Wi

/iring
Diagram2-9
Field Wiring2-7
Grounding
Housing
Shield Wire
Power Connections
Sensor Connections
Millivolt
Ohm
RTD2-9
Thermocouple
Surges/Transients

Model 3244MV

Rosemount and the Rosemount logotype are registered trademarks of Rosemount Inc. Multivariable (MV) is a trademark of Rosemount Inc. Teflon is a registered trademark of E.I. du Pont de Nemours & Company All other marks are the property of their respective owners.

Emerson Process Management

Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 USA T (U.S.) 1-800-999-9307 T (International) (952) 906-8888 F (952) 949-7001

www.rosemount.com

Frankenstrasse 21 63791 Karlstein Germany T 49 (6188) 992 0 F 49 (6188) 992 112

Rosemount Temperature GmbH Emerson Process Management Asia Pacific Private Limited 1 Pandan Crescent Singapore 128461 T (65) 777 8211 F (65) 777 0947 AP.RMT-Specialist@emersonprocess.com

© 2002 Rosemount Inc. All rights reserved.